DOI QR코드

DOI QR Code

An Object-Based Verification Method for Microscale Weather Analysis Module: Application to a Wind Speed Forecasting Model for the Korean Peninsula

미기상해석모듈 출력물의 정확성에 대한 객체기반 검증법: 한반도 풍속예측모형의 정확성 검증에의 응용

  • Kim, Hea-Jung (Department of Statistics, Dongguk University) ;
  • Kwak, Hwa-Ryun (Institute of Statistical Information and Technique, Dongguk University) ;
  • Kim, Sang-il (Center for Atmospheric Science and Earthquake Research) ;
  • Choi, Young-Jean (Center for Atmospheric Science and Earthquake Research)
  • 김혜중 (동국대학교 통계학과) ;
  • 곽화륜 (동국대학교 통계정보기술연구소) ;
  • 김상일 (기상기술개발원 차세대도시농림융합기상사업단) ;
  • 최영진 (기상기술개발원 차세대도시농림융합기상사업단)
  • Received : 2015.11.12
  • Accepted : 2015.12.11
  • Published : 2015.12.31

Abstract

A microscale weather analysis module (about 1km or less) is a microscale numerical weather prediction model designed for operational forecasting and atmospheric research needs such as radiant energy, thermal energy, and humidity. The accuracy of the module is directly related to the usefulness and quality of real-time microscale weather information service in the metropolitan area. This paper suggests an object based verification method useful for spatio-temporal evaluation of the accuracy of the microscale weather analysis module. The method is a graphical method comprised of three steps that constructs a lattice field of evaluation statistics, merges and identifies objects, and evaluates the accuracy of the module. We develop lattice fields using various evaluation spatio-temporal statistics as well as an efficient object identification algorithm that conducts convolution, masking, and merging operations to the lattice fields. A real data application demonstrates the utility of the verification method.

미기상해석모듈(microscale weather analysis module)은 복사에너지, 열, 습도 등의 순환을 시-공간적으로 세밀하게 설명하고 모의실험 할 수 있도록 개발한 초고분해능($1km{\times}1km$ 이내)의 기상모델이다. 본 논문은 미기상해석모듈의 정확성을 시공간적으로 검증할 수 있도록 고안한 객체기반 검증법을 제안한다. 이 검증법은 통계그래픽을 사용하는 시각적인 방법이며, 미기상해석모듈의 평가통계출력장 구축단계, 객체식별 및 병합단계, 모듈의 정확성 검증단계로 이루진다. 이를 위해 두 가지 통계를 사용하여 삼차원의 평가통계출력장을 구축하였고, 구축된 출력장에서 정의되는 시계열통계들에 대해 합성(convolution), 가면화(masking) 및 병합작업(merging)을 시행하여 출력장에서 모듈검증대상 지역인 객체를 식별하는 알고리즘을 개발하였다. 또한, 사례연구를 통해 제안된 객체기반 검증법의 유용성을 보였다.

Keywords

References

  1. Boo, K. O. and Oh, S. N. (2000). Characteristics of spatial and temporal distribution of air temperature in Seoul, Journal of the Korean Meteorological Society, 36, 499-506.
  2. Christian, B., David, R. H. and Pierre, H. (2004). Medical image computing and computer-assisted intervention-MICCAI 2004, In Proceeding of the 7th International Conference, 26-29.
  3. Davis, C. A., Brown, B. G. and Bullock, R. G. (2006a). Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas, Monthly Weather Review, 134, 1772-1784. https://doi.org/10.1175/MWR3145.1
  4. Davis, C. A., Brown, B. G. and Bullock, R. G. (2006b). Object-based verification of precipitation forecasts. Part II: Application to convective rain systems, Monthly Weather Review, 134, 1785-1795. https://doi.org/10.1175/MWR3146.1
  5. Dette, H. and Pararoditis, E. (2007). Testing equality of spectral densities (Technical Report), Komplexitatsreduktion in Multivariaten Datenstrukturen, Universitat Dortmund.
  6. Developmental Testbed Center (2013). Model evaluation tools version 4.1 (MET v4.1), Boulder, Colorado, USA.
  7. Doswell, C. A., Davies-Jones, R. and Keller, D. L. (1990). On summary measures of skill in rare event forecasting based on contingency tables, Weather and Forecasting, 5, 576-585. https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2
  8. Giri, N. (1965). On the complex analogues of and tests, The Annals of Mathematical Statistics, 36, 664-670. https://doi.org/10.1214/aoms/1177700173
  9. Gomez, R. M. P. and Drouiche, K. (2002). A test of homogeneity for autoregressive processes, International Journal of Adaptive Control and Signal Processing, 16, 231-242. https://doi.org/10.1002/acs.697
  10. Ha, J. C., Lee, D. H., Lee, J. S., Lee, H. C. and Chang, D. E. (2010). Korea local analysis and prediction system, In Proceedings of the Autumn Meeting of Korean Meteorological Society, 218-219.
  11. Hannan, E. J. (1970). Multiple Time Series, Wiley, New York.
  12. Hitchens, N. M., Baldwin, M. E. and Trapp, R. J. (2012). An object-oriented characterization of extreme precipitation-producing convective systems in the midwestern United States, Monthly Weather Review, 140, 1356-1366. https://doi.org/10.1175/MWR-D-11-00153.1
  13. Kim, Y. H., Ryoo, S. B., Park, I. S., Koo, H. J. and Nam, J. C. (2008). Does the restoration of an inner-city stream in Seoul affect local thermal environment, Theoretical and Applied Climatology, 92, 239-248. https://doi.org/10.1007/s00704-007-0319-z
  14. Korea Meteorological Administration (2011). Public satisfaction survey on national weather service in 2011, Korea Meteorological Administration, Korea.
  15. Li, J., Hsu, K., AghaKouchak, A. and Sorooshian, S. (2015). An object-based approach for verification of precipitation estimation, International Journal of Remote Sensing, 36, 513-529. https://doi.org/10.1080/01431161.2014.999170
  16. Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed, Wiley, New York.
  17. Marahaj, E. A. (2002). Comparison of non-stationary time series in the frequency domain, Computational Statistics and Data Analysis, 40, 131-141. https://doi.org/10.1016/S0167-9473(01)00100-1
  18. Mora-Ramirez, M. A. and Garcia, A. R. (2012). Evaluation of WRF-CHEM simulations with the unified post processor (UPP) and model evaluation tool (MET), In Proceeding of the 11th Annual CMAS Conference, 15-17.
  19. Shumway, R. H. and Stoffer, D. S. (2010). Time Series Analysis and Its Applications With R Examples, 3nd ed., Springer.
  20. Skok, G., Tribbia, J., Rakovec, J. and Brown, B. (2009). Object-based analysis of satellite-derived precipitation systems over the low and midlatitude Pacific Ocean, Monthly Weather Review, 137, 3196-3218. https://doi.org/10.1175/2009MWR2900.1
  21. Skok, G., Tribbia, J. and Rakovec, J. (2010). Object-based analysis and verification of WRF model precipitation in the low and midlattitude Pacific Ocean, Monthly Weather Review, 138, 4561-4575. https://doi.org/10.1175/2010MWR3472.1
  22. Toshiaki, I., Shimodozono, K. and Hanaki, K. (1999). Impact of anthropogenic heat on urban climate in Tokyo, Atmospheric Environment, 33, 3897-3909. https://doi.org/10.1016/S1352-2310(99)00132-6
  23. Wilks, D. S. (1995). Statistical Method in the Atmospheric Sciences, Academic Press, San Diego.
  24. Wold, H. O. A. (1954). A Study in the Analysis of Stationary Time Series, 2nd Ed., Almqvist and Wiksell, Uppsala.