• Title/Summary/Keyword: 시계열 통계

Search Result 564, Processing Time 0.024 seconds

주가의 장기적 기억, 자기회귀 분수적불 이동평균 과정과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.9 no.1
    • /
    • pp.95-118
    • /
    • 2003
  • 한 시계열의 자기상관계수의 절대값을 시차를 무한대로 접근시켜 가면서 각 시차에 대하여 구하고 이 절대값을 모두 더한 값이 무한일 때 이 시계열은 장기기억을 가진다. 이로 인하여 장기기억 모수를 추정하는데에는 자기상관을 기본으로 한다. 표본의 자기상관과 이론적 자기상관 사이의 거리를 최소하여 추정통계량을 유도하고 있는 것이 일반적이다. 이 경우에는 정상적 과정에 한하여 적용이 가능하다. 시계열은 어느 시계열이던지 간에 이 시계열에 적합한 모형이 존재할 것이고 이 모형을 시계열에 적용하면 잔차 시계열을 얻을 수 있다. 원래 시계열의 이론적 상관 대신 원래 시계열의 잔차 시계열의 자기상관과 표본의 자기상관 사이의 거리를 최소하여 추정통계량을 얻으면 통계량의 계산이 편하고 이 추정량은 정상적 시계열과 비정상적 시계열에 다같이 적용할 수 있다. 본 논문에서는 잔차의 자기상관을 이용하여 자기회귀 분수적분 이동평균 과정의 모수 추정량을 도출한다. 그리고 이 추정 통계량에 입각하여 주가의 형성과정을 살펴보고 장기기억이 옵션가격과 포트폴리오 구성에 미치는 영향을 밝힌다.

  • PDF

통계패키지에서의 시계열 분석방법의 비교연구

  • 김수화;김승희;조신섭
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.119-130
    • /
    • 1994
  • 각종 통계패키지 내에 수용되어 있는 시계열 분석방법은 패키지의 특성이나 기능에 따라 다소 차이가 있다. 본 논문에서는 일반덕으로 많이 사용되고 있는 8종류의 통계패키지 (EXECUSTAT, MINITAB, RATS, SAS, SCA, S-PLUS, TSP)에서 시계열 분석이 어떻게 이루어지는지를 비교 검토하였다. 지수평활법과 ARIMA 모형에 의한 분석방법을 중심으로 비교하였으며, 아울러 사용자 관점에서 편리하고 보다 효율적인 패키지가 갖추어야 할 기능들을 제시하였다.

  • PDF

Seasonal adjustment for monthly time series based on daily time series (일별 시계열을 이용한 월별 시계열의 계절조정)

  • Geung-Hee Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The monthly series is an aggregation of daily values. In the absence of observable daily data, calendar effects such as trading day and holidays are estimated using a RegARIMA model. However, if the daily series were observable, these calendar effects could be estimated directly from the daily series, potentially improving the seasonal adjustment of the monthly time series. In this paper, we propose a method to improve the seasonal adjustment of monthly time series by using calendar variation estimation based on daily time series. We apply this seasonal adjustment method to three monthly time series and compare our results with those obtained using X-13ARIMA-SEATS.

Homogeneity Test of Random Coefficient for the First Order Nonlinear Time Series Panel Data (일차 비선형 시계열 패널자료의 확률계수 동질성 검정)

  • 김인규;황선영;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.1
    • /
    • pp.97-104
    • /
    • 2000
  • 본 논문은 m개의 독립적인 일차 비선형 시계열로 구성된 패널자료의 동질성 검정에 대한 연구로서 먼저 일반적인 일차 비선형 시계열의 정상성 조건을 유도하고 이어서 동질성 검정법을 제시하고 연관된 극한분포를 규명하였다. 또한 모의실험을 하여 제안된 검정법의 모의검정력을 구하였다.

  • PDF

웨이브렛 변환과 재무시계열

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.1-36
    • /
    • 2005
  • 한 시계열의 원래 관찰치가 본래 가지고 있는 정보를 하나도 잃지 않고 또한 손상시키지 않고 그대로 보존되며 계산이 용이하고, 뿐만 아니라 가능도함수나 비모수 추정함수를 계산함에 있어 수치적 불안정 잠재성이 존재하지 않도록 변환된 시계열을 얻을 수 있으면, 다시 말해 각종 통계량의 계산에 용이하게 적용 가능하되 원래 시계열이 보유하고 있는 모든 성질들은 추호도 손상시킴이 없이 이 시계열을 변환시킬 수 있는 변환방법이 존재한다면, 모수의 추정치와 검정통계량을 정확히 얻을 수 있을 것이다. 이와 같은 변환방법이 웨이브렛 변환이다. 이 변환은 푸리에 분석의 결점을 극복하되 후리에 변환이 적용되는 분야에는 거의 모두 적용 가능한 변환방법이다. 이 논문에서는 시계열의 웨이브렛 변환을 소개하고 이 변환이 재무시계열의 모형화에 한몫을 단단히 할 수 있다는 점을 밝히고자 한다. 그리고 웨이브렛 변환을 성공적으로 적용할 수 있는 주가과정을 하나의 예로 제시하여 웨이브렛 변환의 구체적 적용방법을 탐구하고자 한다. 웨이브렛의 주가 시계열의 적용방법의 한 예로 주가의 장기기억과정을 분석한다. 한국과 외국의 일별 주가지수의 수익률 시계열들이 장기기억과정을 따르는 시계열임이 발견되었다. 여러 형태의 웨이브들을 사용하여 검정하였는데 이 모두가 한결같이 주가지수가 장기기억성과정임을 지지하고 있다.

  • PDF

패널 승법 계절 시계열 모형의 동질성 검정과 적용

  • 이성덕;김성호;차경엽
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • 계절성을 갖는 승법 계절 혼합 시계열 모형들의 동질성 검정을 위하여 Wald 검정 통계량을 구하고 그 극한 분포가 ${\chi}^2$-분포함을 보였으며 시뮬레이션 연구를 통하여 뒷받침하였다. 도시 규모가 비슷한 우리나라 지역별 평균 온도자료를 가지고 이 동질성 검정을 수행하여 시계열을 지역별로 모형화하여 예측한 것과 동질성이 있는 것을 묶고 모형화하여 예측한 것에 대한 예측 오차를 비교하였다.

  • PDF

Functional Forecasting of Seasonality (계절변동의 함수적 예측)

  • Lee, Geung-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.885-893
    • /
    • 2015
  • It is important to improve the forecasting accuracy of one-year-ahead seasonal factors in order to produce seasonally adjusted series of the following year. In this paper, seasonal factors of 8 monthly Korean economic time series are examined and forecast based on the functional principal component regression. One-year-ahead forecasts of seasonal factors from the functional principal component regression are compared with other forecasting methods based on mean absolute error (MAE) and mean absolute percentage error (MAPE). Forecasting seasonal factors via the functional principal component regression performs better than other comparable methods.

An Analysis of Categorical Time Series Driven by Clipping GARCH Processes (연속형-GARCH 시계열의 범주형화(Clipping)를 통한 분석)

  • Choi, M.S.;Baek, J.S.;Hwan, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.683-692
    • /
    • 2010
  • This short article is concerned with a categorical time series obtained after clipping a heteroscedastic GARCH process. Estimation methods are discussed for the model parameters appearing both in the original process and in the resulting binary time series from a clipping (cf. Zhen and Basawa, 2009). Assuming AR-GARCH model for heteroscedastic time series, three data sets from Korean stock market are analyzed and illustrated with applications to calculating certain probabilities associated with the AR-GARCH process.

Outlier detection and time series modelling in the stationary time series (정상 시계열에서의 이상치 발견과 시계열 모형구축)

  • 이종협;최기헌
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.139-156
    • /
    • 1992
  • Recently several authors have introduced iterative methods for detecting time series outliers. Most of these methods are developed under the assumption that an underlying outlier-free model is known or can be identified. Since outliers can distort model identification or even make it impossible, we propose procedure begins with a descriptive data analysis of a time series using distance measures between two observations. Properties of the proposed test statistic are presented. To distinguish the type of an outlier are used transfer function models. An empirical example is given to illustrate the time series modeling procedure.

  • PDF

A study on the application of time series analysis statistical package based on micro-computer (마이크로 컴퓨터 상에서의 시계열 분석 통계 패키지의 활용에 관한 연구)

  • 왕숙희;백두권
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.11-21
    • /
    • 1990
  • 본 논문에서는 시계열 자료 분석을 위한 마이크로 컴퓨터용 통계패키지인 TIMESLAB을 소개하였다. TIMESALB은 종래의 통계 분석용 패키지인 SPSS, SAS, TSP 들이 대형 컴퓨터 시스템에 맞도록 설계되어 있어 PC에 서 활용하기에는 많은 디스크 용량을 필요로 하는 등의 문제점을 모두 극복 한 PC용 시계열 자료 분석 프로그램이다. TIMESLAB은 대화용으로 설계되 어 있고 아주 적은 하드 디스크 용량만 가지고서도 쉽게 접근이 가능한 편 리한 시스템의 그 구성, 활용 및 명령어들을 제시하였고, 예제 프로그램과 그 결과를 제시하였다.

  • PDF