• Title/Summary/Keyword: Modified release

Search Result 309, Processing Time 0.028 seconds

Calculation of Unsaturated Hydraulic Conductivity from Soil Moisture Changes in Pressure-Plate Extractor (Pressure-Plate Extractor 내(內) 토양수분함량(土壤水分含量) 변화(變化)로부터 불포화수리전도도(不飽和水理傳導度)의 계산(計算))

  • Ro, Hee-Myeong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 1984
  • A study was carried out to develop a modified Gardner's method, which enabled us to obtain simultaneously both the unsaturated hydraulic conductivities and the moisture retention curves by the use of a soil moisture pressure-plate extractor. The unsaturated hydraulic conductivity was calculated from soil moisture changes under different tension ranges in the pressure- plate extractor by means of Gardner's pressure-plate outflow equation. From 30mbar-tension to 10bar-tension, the unsaturated hydraulic conductivities obtained on three soils (Bonryang sandy loam, Yesan silt loam, and Pogog clay loam) varied $3.09{\times}10^{-2}cm/day{\sim}4.06{\times}10^{-6}cm/day$, $1.34{\times}10^{-2}cm/day{\sim}7.30{\times}10^{-6}cm/day$, and $1.83{\times}10^{-2}cm/day{\sim}8.50{\times}10^{-6}cm/day$, respectively. In comparison with the outflow method, it is inconvenient to perform the periodic determinations of the soil moisture content that require release of the applied Pressure before readjusting the pressure desired for each measurement. Nevertheless, the main advantage of the modified method is that the unsaturated hydraulic conductivities of different soils can be calculated simultaneously with a small amount of each soil sample. It is concluded that the unsaturated hydraulic conductivity can be calculated from soil moisture changes in the soil moisture pressure-plate extractor.

  • PDF

Selection of transgenic Solanum nigrum L. used environmental remediation expressing organomercurial lyase (Organomercurial lyase 유전자를 도입한 환경정화용 형질전환 까마중(Solanum nigrum) 선발)

  • Choi, Kyung-Hwa;Kim, Yong-Ho;Chung, Hyen-Mi;Choi, Young-Im;Noh, Eun-Woon;Kim, Hyun-Soon;Jeon, Jae-Heung
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.291-298
    • /
    • 2008
  • Methylmercury, an organic derivative, is the principal form of mercury that biomagnifies and causes neurodegenerative symptoms in animals. In recent years, living modified organism (LMO) resulting from biotechnology has played a highly visible and controversial role. Despite the potential benefits of this technology, public concerns have been raised about the environmental risk of LMO. The concern on the risk from LMO release has urged efforts to evaluate and manage the risks of the LMO. To build up the capacity building of risk assessment method for LMO used environmental remediation, we engineered Solanum nigrum L, expressing the modified bacterial gene, merB, encoding organomercurial lyase. Two independently isolated transgenic lines produced merB RNA. Transgenic Solanum nigrum leaf discs expressing merB gene showed organic mercury resistance, forming shoots well on growth medium containing $0.5{\mu}M$ methylmercury (II) chloride and $1{\mu}M$ phenylmercuric acetate while control plants breached. Transgenic merB seeds germinated and grew on growth medium containing $2{\mu}M$ methylmercury (II) chloride and phenylmercuric acetate. The merB transgenic plants will be used for risk assessment of natural environment.

Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier (다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰)

  • Jeong, Gyeong-Won;Nah, Jae-Woon;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.404-409
    • /
    • 2017
  • Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine ($-NH_2$) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.

Thermal Behavior and Kinetics of Coal Blends during Devolatilization (탈휘발화 과정에서 혼탄의 반응률과 열적 거동에 관한 연구)

  • Ryu, Kwang-Il;Kim, Ryang-Gyoon;Li, Dong-Fang;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • The objective of this research is to predict the TG curve of blends of bituminous coal and sub-bituminous coal during devolatilization. TSL (Thermal Shock Large) TGA was used for Experiments, and Coats-redfern method was used for reaction order calculation. Based on reaction order, sum method was verified to be suitable for a single coal, then, prediction and comparison of TG curve of coal blends was conducted using both of WSM (Weight Sum Method) and MWSM (Modified Weight Sum Method), where the latter was developed in this research. The presented experiment results and WSM & MWSM were showed to be reasonable using linear least square method. MWSM performed more accurately than WSM for the case that TG curve had different slopes and the case that sharp weight loss happened due to release of volatile matter. The results showed that it's possible to predict the thermal behavior of coal blends during devolatilization based on the thermal behavior of single coals.

Platelet-rich fibrin along with a modified minimally invasive surgical technique for the treatment of intrabony defects: a randomized clinical trial

  • Ahmad, Nabila;Tewari, Shikha;Narula, Satish Chander;Sharma, Rajinder Kumar;Tanwar, Nishi
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.355-365
    • /
    • 2019
  • Purpose: The modified minimally invasive surgical technique (M-MIST) has been successfully employed to achieve periodontal regeneration. Platelet-rich fibrin (PRF) is known to enhance wound healing through the release of growth factors. This study aimed to observe the outcomes of periodontal surgery when M-MIST was used with or without PRF for the treatment of isolated intrabony defects. Methods: This randomized clinical trial was conducted on 36 systemically healthy patients, who had chronic periodontitis associated with a single-site buccal probing pocket depth (PPD) and clinical attachment level of ≥5 mm. Patients were randomly divided into 2 groups: the test group treated with M-MIST and PRF, and the control group treated with M-MIST alone. The primary periodontal parameters analyzed were PPD, relative attachment level (RAL), and relative gingival margin level. The radiographic parameters analyzed were change in alveolar crest position (C-ACP), linear bone growth (LBG), and percentage bone fill (%BF). Patients were followed up to 6 months post-surgery. Results: Intragroup comparisons at 3 and 6 months showed consistently significant improvements in PPD and RAL in both the groups. In intergroup comparisons, the improvement in PPD reduction, gain in RAL, and the level of the gingival margin was similar in both groups at 3 and 6 months of follow-up. Furthermore, an intergroup comparison of radiographic parameters also demonstrated similar improvements in C-ACP, LBG, and %BF at 6 months of follow-up. Conclusions: M-MIST with or without PRF yielded comparable periodontal tissue healing in terms of improvements in periodontal and radiographic parameters. Further investigation is required to confirm the beneficial effects of PRF with M-MIST.

Evaluation of horizontal gene transfer from genetically modified zoysiagrass to the indigenous microorganisms in isolated GMO field (GMO 격리포장에서의 유전자변형 들잔디로부터 토착미생물로의 수평유전자전달 평가)

  • Bae, Tae-Wung;Lee, Hyo-Yeon;Ryu, Ki-Hyun;Lee, Tae-Hyeong;Lim, Pyung-Ok;Yoon, Pill-Yong;Park, Sin-Young;Riu, Key-Zung;Song, Pill-Soon;Lee, Yong-Eok
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.75-80
    • /
    • 2007
  • The release of genetically modified organisms ($GMO_{s}$) into the environment has the potential risks regarding the possibility of gene transfer from $GMO_{s}$ to natural organisms and this needs to be evaluated. This study was conducted to monitor the possible horizontal gene transfer from herbicide-resistant zoysiagrass (Zoysia japonica Steud.) to indigenous microorganisms. We have first examined the effect of field-released GM zoysiagrass on the microbial flora in the gut of locust (Locusts mlgratoria). The microbial flora was analyzed through determining the 165 rDHA sequences of microorganisms. The comparison of the microbial flora in the gut of locusts that were captured at the field of GM zoysiagrass and of wild-type revealed that there is no noticeable difference between these two groups. This result indicates that the GM zoysiagrass does not have negative impact on microbial flora in the gut of locust. We then investigated whether the horizontal gene transfer occurred from GM zoysiagrass to microbes in soil, rhizosphere and faecal pellets from locusts by utilizing molecular tools such as Southern hybridization and polymerase chain reaction (PCR). When the total DNAs isolated from microbes in GM zoysiagrass and in wild-type zoysiagrass fields were hybridized with probes for bar or hpt gene, no hybridization signal was detected from both field isolates, while the probes were hybridized with DNA from the positive control. Absence of these genes in the FNAs of soil microorganisms as well as microbes in the gut of locust was further confirmed by PCR. Taken together, our data showed that horizontal gene transfer did not occur in this system. These results further indicate that frequencies of transfer of engineered plant DNA to bacteria are likely to be negligible.

An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Go, Gyu-Hyun;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • A geological repository has been considered as an option for the disposal of high-level radioactive waste (HLW). The HLW is disposed in a host rock at a depth of 500~1,000 meters below the ground surface based on the concept of engineered barrier system (EBS). The EBS is composed of a disposal canister, buffer material, backfill material, and gap-filling material. The compacted bentonite buffer is very important since it can restrain the release of radionuclide and protect the canister from the inflow of ground water. The saturation of the buffer decreases because high temperature in a disposal canister is released into the surrounding buffer material, but saturation of the buffer increases because of the inflow of ground water. The unsaturated properties of the buffer are critical input parameters for the entire safety assessment of the engineered barrier system. In Korea, Gyeongju bentonite can be considered as a candidate buffer material, but there are few test results of the unsaturated properties considering temperature variation. Therefore, this paper conducted experiment of soil-water characteristic curve for the Gyeongju compacted bentonite considering temperature variation under a constant water content condition. The relative error showed approximately 2% between test results and modified van-Genuchten model values.

A case study for the dispersion parameter modification of the Gaussian plume model using linear programming (Linear Programming을 이용한 가우시안 모형의 확산인자 수정에 관한 사례연구)

  • Jeong, Hyo-Joon;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.311-319
    • /
    • 2003
  • We developed a grid-based Gaussian plume model to evaluate tracer release data measured at Young Gwang nuclear site in 1996. Downwind distance was divided into every 10m from 0.1km to 20km, and crosswind distance was divided into every 10m centering released point from -5km to 5km. We determined dispersion factors, ${\sigma}_y\;and\;{\sigma}_z$ using Pasquill-Gifford method computed by atmospheric stability. Forecasting ability of the grid-based Gaussian plume model was better at the 3km away from the source than 8km. We confirmed that dispersion band must be modified if receptor is far away from the source, otherwise P-G method is not appropriate to compute diffusion distance and diffusion strength in case of growing distance. So, we developed an empirical equation using linear programming. An objective function was designed to minimize sum of the absolute value between observed and computed values. As a result of application of the modified dispersion equation, prediction ability was improved rather than P-G method.

Self-Assembled Nanoparticles of Bile Acid-Modified Glycol Chitosans and Their Applications for Cancer Therapy

  • Kim Kwangmeyung;Kim Jong-Ho;Kim Sungwon;Chung Hesson;Choi Kuiwon;Kwon Ick Chan;Park Jae Hyung;Kim Yoo-Shin;Park Rang-Won;Kim In-San;Jeong Seo Young
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.167-175
    • /
    • 2005
  • This review explores recent works involving the use of the self-assembled nanoparticles of bile acid-modified glycol chitosans (BGCs) as a new drug carrier for cancer therapy. BGC nanoparticles were produced by chemically grafting different bile acids through the use of l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The precise control of the size, structure, and hydrophobicity of the various BGC nanoparticles could be achieved by grafting different amounts of bile acids. The BGC nanoparticles so produced formed nanoparticles ranging in size from 210 to 850 nm in phosphate-buffered saline (PBS, pH=7.4), which exhibited substantially lower critical aggregation concentrations (0.038-0.260 mg/mL) than those of other low-molecular-weight surfactants, indicating that they possess high thermodynamic stability. The SOC nanoparticles could encapsulate small molecular peptides and hydrophobic anticancer drugs with a high loading efficiency and release them in a sustained manner. This review also highlights the biodistribution of the BGC nanoparticles, in order to demonstrate their accumulation in the tumor tissue, by utilizing the enhanced permeability and retention (EPR) effect. The different approaches used to optimize the delivery of drugs to treat cancer are also described in the last section.

Study on Anti-biofouling Properties of the Surfaces Treated with Perfluoropolyether (PFPE) (Perfluoropolyether (PFPE)로 처리된 표면의 생물오손 방지 특성 연구)

  • Park, Sooin;Kwon, Sunil;Lee, Yeongmin;Koh, Won-Gun;Ha, Jong Wook;Lee, Sang-Yup
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.71-76
    • /
    • 2012
  • Biofouling by marine organisms such as algae and barnacles causes lots of significant problems in marine systems such as a rise of the maintenance-repair cost for the ship and the marine structures. In this work, a fluoropolymer, perfluoropolyether (PFPE), was applied as an anti-biofouling coating material that prevents the adhesion of marine organisms and facilitates the removal of them. Water contact angles of various surfaces were tested to examine the hydrophobicity of the PFPE-modified surface. The PFPE-modified surface showed the water contact angle of $64.5^{\circ}$ which is a remarkable rise from $46.7^{\circ}$ of amine-treated surface. When the substrate was treated with PFPE, the adhesion on the of the barnacle and other marine organisms were repressed around 15% by the enhanced hydrophobicity. In addition, the removal the of the adhered marine organisms were better comparing to that of the surface prepared by PDMS. Surfaces of the substrate treated by PFPE were characterized through physical and chemical methods to analyze the biofouling results. Degree of biomolecular adhesion to the substrate was quantified by the measurement the fluorescence intensity of marine organisms dyed with green fluorescence. PFPE is expected to be applicable not only to anti-biofouling systems but also to medical devices where the prevention of protein adhesion is required.