DOI QR코드

DOI QR Code

Selection of transgenic Solanum nigrum L. used environmental remediation expressing organomercurial lyase

Organomercurial lyase 유전자를 도입한 환경정화용 형질전환 까마중(Solanum nigrum) 선발

  • Choi, Kyung-Hwa (Environmental Biosafety Division, National Institute of Environmental Research) ;
  • Kim, Yong-Ho (Environmental Biosafety Division, National Institute of Environmental Research) ;
  • Chung, Hyen-Mi (Environmental Biosafety Division, National Institute of Environmental Research) ;
  • Choi, Young-Im (Biotechnology Division, Korea Forest Research Institute) ;
  • Noh, Eun-Woon (Biotechnology Division, Korea Forest Research Institute) ;
  • Kim, Hyun-Soon (Plant genome research center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeon, Jae-Heung (Plant genome research center, Korea Research Institute of Bioscience and Biotechnology)
  • 최경화 (국립환경과학원 환경바이오안전과) ;
  • 김용호 (국립환경과학원 환경바이오안전과) ;
  • 정현미 (국립환경과학원 환경바이오안전과) ;
  • 최영임 (국립산림과학원 생물공학과) ;
  • 노은운 (국립산림과학원 생물공학과) ;
  • 김현순 (한국생명공학연구원 식물유전체연구센터) ;
  • 전재흥 (한국생명공학연구원 식물유전체연구센터)
  • Published : 2008.12.31

Abstract

Methylmercury, an organic derivative, is the principal form of mercury that biomagnifies and causes neurodegenerative symptoms in animals. In recent years, living modified organism (LMO) resulting from biotechnology has played a highly visible and controversial role. Despite the potential benefits of this technology, public concerns have been raised about the environmental risk of LMO. The concern on the risk from LMO release has urged efforts to evaluate and manage the risks of the LMO. To build up the capacity building of risk assessment method for LMO used environmental remediation, we engineered Solanum nigrum L, expressing the modified bacterial gene, merB, encoding organomercurial lyase. Two independently isolated transgenic lines produced merB RNA. Transgenic Solanum nigrum leaf discs expressing merB gene showed organic mercury resistance, forming shoots well on growth medium containing $0.5{\mu}M$ methylmercury (II) chloride and $1{\mu}M$ phenylmercuric acetate while control plants breached. Transgenic merB seeds germinated and grew on growth medium containing $2{\mu}M$ methylmercury (II) chloride and phenylmercuric acetate. The merB transgenic plants will be used for risk assessment of natural environment.

수은은 산업화될수록 방출량이 많아지고 자연생태계의 먹이사슬에 의한 생물학적 축적에 의하여 결국 인간에게 강한 독성을 나타내게 된다. 최근 중금속 무독화관련 유전자를 도입한 유전자변형식물체를 이용하여 중금속의 독성을 제거하거나 저감하려는 연구가 활발히 이루어지고 있다. 그러나 유전자변형생물체는 자연생태계에 미치는 환경위해성을 평가하여 안전성을 검증한 후 환경에 방출해야만 한다. 환경정화용 유전자변형생물체의 환경위해성 평가기술개발연구에 이용하기 위한 형질전환 식물체 생산을 위하여 까마중에 유기수은 (organic mercury)을 무기수은 (ionic mercury)으로 전환시켜서 독성을 저감시키는 organomercurial lyase (merB) 유전자를 도입하여 형질전환 시켰다. 유전자 도입 및 발현이 확인된 2개의 형질전환 라인 (merB1, merB4)은 유기수은제제인 MMC $0.5{\mu}M$, PMA $1{\mu}M$에서 저항성을 나타내었다. 또한 형질전환 1세대 종자도 $2{\mu}M$ MMC와 PMA에 저항성을 나타내는 것을 확인하였다. 향후 이들 형질전환체를 이용하여 환경 정화용 유전자변형생물체의 환경위해성 평가방법 개발 연구를 수행 할 것이다.

Keywords

References

  1. 김동헌 (2008) 유전자변형작물의 연구 및 재배동향. In: 바이오안 전성백서. 한국생명공학연구원
  2. 김용호 (2008) 환경정화용 유전자변형생물체의 연구 및 환경방출의 위해성 고찰. Biosafety 34: 27-41
  3. 노은운 (2008) 국내 유전자변형 임목의 연구개발 동향. In: 바이 오안전성백서. 한국생명공학연구원
  4. 박홍재 (2008) 환경위해성 평가 및 심사. In: 바이오안전성백서. 한국생명공학연구원
  5. Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96: 6808-6813 https://doi.org/10.1073/pnas.96.12.6808
  6. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18: 213-217 https://doi.org/10.1038/72678
  7. Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoids) confers mercuric ion reduction and resistance. Plant Biotech. J. 1: 311 https://doi.org/10.1046/j.1467-7652.2003.00031.x
  8. Choi KH, Yang DC, Jeon JH, Kim HS, Joung YH, Joung H (1996) Expression of cold regulated gene in transgenic Solanum tuberosum L. Korean J Plant Tissue Culture 23: 311-315
  9. Choi YI, Noh EW, Lee HS, Han MS (2007) Mercury-tolerant transgenic poplars expressing two bacterial mercurymetabolizing genes. J. Plant Biol. 50(6): 658-662 https://doi.org/10.1007/BF03030610
  10. Choi YI, Noh EW, Lee HS, Han MS, Lee JS, Choi KS (2005) An efficient and novel plant selectable marker based on organomercurial resistance. J Plant Biol 48: 351-355 https://doi.org/10.1007/BF03030576
  11. Czako M, Feng X, He Y, Liang D, Marton L (2005) Genetic modification of wetland grasses for phytoremediation. Z Naturforsch[C] 60: 285-291
  12. Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28: 103-110 https://doi.org/10.1007/s10653-005-9019-8
  13. Eapen S, D'Souza SF (2005) Prospects of genetics engineerig of plants for phytoremediation of toxic metals. Biotech Advances 23: 97-114 https://doi.org/10.1016/j.biotechadv.2004.10.001
  14. Heaton ACP, Rugh CL, Wang Nl, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22: 2940-2947 https://doi.org/10.1897/02-442
  15. Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72: 197-205 https://doi.org/10.1007/s00253-005-0250-0
  16. Kim HC, Kim HM (2003) Risk assessment of genetically modified organism. J Toxicol Pub Health 19: 1-12
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Ok YS, Kim JG, Yang JE, Kim HY, Yoo KY, Park CJ, Chung DY (2004) Phytoremediation of heavy metal contaminated soils using transgenic plants. Korean J Soil Sci Fert 37: 396-406
  19. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93: 3182-3187 https://doi.org/10.1073/pnas.93.8.3182
  20. Ruiz ON, Hussein HS, Terry N, Daiell H (2003) Phytoremediation of organomecurial compounds via chloroplast genetic engineering. Plant Physiol 132: 1-9 https://doi.org/10.1104/pp.900072.
  21. Schuh W, Nelson MR, Bigelow DM, Orum TV, Orth CE, Lynch PT, Eyles PS, Blackhall NW, Jones J, Cocking EC, Davey MR (1993) The phenotypic characterization of R2 generation transgenic rice plants under field conditions. Plant Sci 89: 69-79 https://doi.org/10.1016/0168-9452(93)90171-U
  22. Seul EJ, Kim TR, Choi KS (2003) Agrobacterium-mediated transformation of mercury resistance gene via somatic embryogenesis of Phragmites communis Trinius. Bull Biotech CNU 9: 43-49
  23. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnol 21: 914-919 https://doi.org/10.1038/nbt850
  24. Woo HJ, Lim SH, Lee KJ, Won SY, Kim TS, Cho HS, Jin YM (2006) Current development status on the genetically modified crops in Korea. Korean J Intl Agri 18: 221-229