• Title/Summary/Keyword: Modified equation

Search Result 1,402, Processing Time 0.026 seconds

A Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.295-301
    • /
    • 2000
  • The dynamic simulation of slider in hard disk drive is performed using Factored Implicit Finite Difference method. The modified Reynolds equation with Fukui and Kaneko model is employed as a governing equation. Equations of motion for the slider of three degrees of freedom are solved simultaneously with the modified Reynolds equation. The transient responses of the slider for disk step bumps and slider impulse forces are shown for various cases and are compared for the iteration algorithm and new algorithm.

ON THE HYERS-ULAM-RASSIAS STABILITY OF A MODIFIED ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Kim, Hark-Mann;Lee, Don-O
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.323-335
    • /
    • 2004
  • In this paper, we solve the general solution of a modified additive and quadratic functional equation f(χ + 3y) + 3f(χ-y) = f(χ-3y) + 3f(χ+y) in the class of functions between real vector spaces and obtain the Hyers-Ulam-Rassias stability problem for the equation in the sense of Gavruta.

  • PDF

CONFORMABLE FRACTIONAL SENSE OF FOAM DRAINAGE EQUATION AND CONSTRUCTION OF ITS SOLUTIONS

  • DARVISHI, MOHAMMAD T.;NAJAFI, MOHAMMAD;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.132-148
    • /
    • 2021
  • The modified F-expansion method is used to construct analytical solutions of the foam drainage equation with time- and space-fractional derivatives. The conformable derivatives are considered as spacial and temporal ones. As a result, some analytical exact solutions including kink, bright-dark soliton, periodic and rational solutions are obtained.

A Parabolic Model to the Modified Mild Slope Equation (수정 완경사 파랑식에 대한 포물형 근사식 모형)

  • Seo, Seung-Nam;Lee, Jong-Chan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.360-371
    • /
    • 2006
  • In order to calculate waves propagating into the shallow water region, a generalized parabolic approximate model is presented. The model is derived from the modified mild slope equation and includes all the existing parabolic models presented in the paper. Numerical results are presented in comparison to laboratory data of Berkhoff et al.(1982). The existing parabolic model shows almost same accuracy against the modified parabolic model and both results of models stand in closer agreement to the laboratory data. Therefore the existing parabolic model based on mild slope equation is a useful tool to compute shallow water waves which turns out to be more fast and stable in computational aspect.

Comparision Analysis of Model Test for Prediction of Uplift Resistance in the Reclaimed Land Greenhouse Foundation (간척지 온실기초 나무말뚝의 인발저항력 예측을 위한 실내모형시험 결과 비교·분석)

  • Song, Chang Seob;Kim, Myeong Hwan;Jang, Ung Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • The object of this paper was to evaulate modified proposed design equation in model test result in order to estimate uplift-resistance of timber pile of reclaimed land greenhouse foundation. Uplift resistance result of model test was increased to according to increased of contact area. Uplift-resistance result of field test tend to lineary increased to according to increased of embedment depth and contact area. Results of field uplift-resistance was evaluate compare with modified proposed design equation results of model test and Effective stress method. As the Effective stress method tend to underestimate, modified proposed design equation results of model test tend to similar type. As the contact area increase, difference between field uplift-resistance results and modified proposed design equation results of model test was considered uplift-speed.

Determination of Stream Reaeration Coefficient Using Modified Gas Tracer Method (Modified Gas Tracer Method 를 이용한 하천 재폭기계수의 산정)

  • 조영준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.57-65
    • /
    • 1999
  • A modified gas tracer method was used to obtain reaeration coefficient from an artificial channel and a reach of Bokha stream, Ichon city. Propane was used as the tracer gas and Rhodamine-B dye as a dispersion and dulution tracer. Concentrations of propane in water sample were measured using a gas chromatograph and concentrationsof dye using UV-Spectrophotometer. To compare measured values with predicted values,commonly used 14 equations were selected . Results of this study suggested that the modified gas tracer method is a potentially useful procedure for th edetermination of reaeration cofficients. However, estimated reaeration coefficients from predictive equations were significantly different from that of this study. Therefore, when using predictive equations, careful selection of equation with consideration for hydraulic characteristics such as flow depth and average velocity, or use of newly derived predictive equation which is adequate for questioned stream would be needed.

  • PDF

Thermodynamic Properties of the Modified Yukawa Potential

  • Okorie, U.S.;Ibekwe, E.E.;Ikot, A.N.;Onyeaju, M.C.;Chukwuocha, E.O.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1211-1218
    • /
    • 2018
  • Within the framework of the modified factorization method, we solve the $Schr{\ddot{o}}dinger$ equation with the modified Yukawa potential. The energy spectrum is obtained using the Pekeris approximation scheme for the centrifugal term. The thermodynamic properties, including the vibrational partition function, vibrational mean energy, vibrational mean free energy, vibrational specific heat capacity and vibrational entropy, are calculated. As a special case, we compare our result with that work of Dong [Int. J. Quant. Chem. 107, 366 (2007)] and find good agreement.

Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test (CP-Ti의 동적거동에 미치는 온도의 영향)

  • Lee, Su-Min;Seo, Song-Won;Park, Kyoung-Joon;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.

A Study on the Novel Prediction of Mold Wall Thickness for a Deep Depth Injection Mold (깊이가 깊은 사출 금형의 새로운 측벽 두께 설계에 관한 연구)

  • Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.528-533
    • /
    • 2008
  • Cavity in the mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Subsequently mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress concentration and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was modified from beam theory considering cantilever and two points bending situation while previous equation was modified from just cantilever bending situation. The validity of novel equation was verified through computer simulations for various mold side and wall thickness.