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THE MODIFIED HYERS-ULAM-RASSIAS STABILITY
OF A MIXED TYPE FUNCTIONAL EQUATION

Kyo00o-HonGg PARK

ABSTRACT. We investigate the modified Hyers-Ulam-Rassias stability for the follow-
ing mixed type functional equation, i.e, cubic or quadratic type functional equation:

9f(z +y) — 9f(z ~ y) + f(6y) = 3f(z + 3y) — 3f(x — 3y) + 9 (2y).

1. INTRODUCTION

In 1940, it is well known that the stability of functional equations was first raised
by S. M. Ulam (24] as follows: Under what condition does there is an additive map-
ping near an approzimately additive mapping between a group and a metric group?

In next year, D. H. Hyers [6] answers the problem of Ulam under the assumption
that the groups are Banach spaces. A generalized version of the theorem of Hyers
for approximately linear mappings was given by Th. M. Rassias [19]. Since then, the
stability problems of various functional equation have been extensively investigated
by a number of authors (for instances, [2, 3, 5, 7, 8, 9, 14, 15, 16, 20, 21, 22}).
In particular, one of the important functional equations studied is the following
functional equation [1, 4, 13, 17]:

fl@+y)+ flxz—y) =2f(z) + 2f(y).

The quadratic function f(x) = gz? is a solution of this functional equation, and so
one usually is called the above functional equation to be quadratic.

A Hyers-Ulam stability problem for the quadratic functional equation was first
proved by F. Skof [23] for functions f : X — Y, where X is a normed space and Y a
Banach space. S. Czerwik [4] generalized the Hyers-Ulam stability of the quadratic
functional equation.
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The cubic function f(z) = cz3 satisfies the functional equation

1) fz+y)+ f(2z —y) =2f(z+y) + 2f(z —y) + 12f(z).
The equation (1) was solved by K.-W. Jun and H.-M. Kim [10] (see also [18]).

In this note, we promise that the equation (1) is called a cubic functional equation
and every solution of the cubic functional equation (1) is said to be a cubic function.

Now, let us introduce the following functional equation:

(2) 9f(z+y) - 9f(z —y) + f(6y) = 3f(z + 3y) — 3f(z — 3y) + 9/ (2v).

It is easy to see that the real-valued function f(z) = cz® + gz? is a solution of the
functional equation (2). Our main purpose in this note is to examine the modified
Hyers-Ulam-Rassias stability problem (or the stability in the spirit of Gavruta [5])
for the equation (2).

2. SoLuTioNs oF EqQ. (2)

Let X and Y be real vector spaces. In this section we will find out the general
solution of (2).

Lemma 1. A mapping f: X — Y is cubic if and only if f is odd and satisfies the
Junctional equation f(z + 3y) + 3f(z — y) = f(z — 3y) + 3f(z + y) + 481 (y) for all
z, ye X.

Proof. (=) Suppose that f is cubic, that is, the functional equation

(3) fRz+y)+ f(2r —y) =2f(z +y) +2f(z — y) + 12f(x)
holds for all z, y € X. By putting z = y = 0 in (3), we see that f(0) = 0, and
setting z = 0 in (3) yields the fact that f is odd. If we interchange z and y in (3),
we have
(4) f(@+2y) - flx—2y) =2f(z +y) - 2f(z — ) + 12f(y).
Let z := z + y and z := z — y, respectively, in (4). Then we obtain

flz+3y) ~ flz—y) =2f(z +2y) - 2/ (z) + 12f(y)

and

fl@+y) - f(z - 3y) =2f(z) - 2f(z - 2y) + 12f(y)-

Comparing the above two results, we get

f(z+3y) — flz-3y) ~ flz—y) + f(z+y) =2f(x + 2y) — 2f (z — 2y) + 24f(y)
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which, by (4), gives
fl@+3y) +3f(z —y) = flz - 3y) +3f(z +y) + 48/ (y)-
(<) Assume that f is odd and satisfies the functional equation
() flz+3y) +3f(z —y) = flz — 3y) +3f (@ +y) + 487 (y)
for all z, y € X. By interchanging z and y in (5), we obtain
(6) fBz+y)+ f8x —y) =3f(z +y) +3f(z —y) +48f(2)
and applying [12, Theorem 2.2} to (6), we see that f is cubic. O
The following lemma is due to [11].

Lemma 2. A mapping f : X — Y is quadratic if and only if f(0) =0, f is even

and satisfies the functional equation f(x + 3y) +3f(z —y) = f(z — 3y) +3f(z +y)
foral z, ye X.

Theorem 1. A function f : X — Y satisfies the equation (1.2) for all z, y € X
if and only if there emist a cubic function C : X — Y and a quadratic function
Q:X =Y such that f(z) =C(x) + Q(z) forallz € X.

Proof. (=) Define the functions C, Q : X — Y by C(z) = 3 [f(z) — f(—x)] and
Qz) = %[f(:c) + f(—2)] for all z, y € X, respectively. Then we have C(0) =
07 C(_:I;) = *C(.’E), Q(_I) = Q(I)7

(7) 9C(z+1vy) — 9C(z — y) + C(6y) = 3C(z + 3y) — 3C(z — 3y) + 9C(2y),
and

(8) 9Q(z +y) - 9Q(z - y) + Q(6y) = 3Q(z + 3y) — 3Q(x — 3y) +9Q(2y)
forall z, y € X.

First, we claim that C is cubic. If we let z := y in (7), we get
(9) C(6y) = 3C(4y) + 3C(2y),
and replacing x by 3y in (7) gives
(10) 2C(6y) = 9C(4y) — 18C(2y)-

We compare (9) with (10) to obtain C(4y) = 8C(2y), and so by putting y := ¥, we
have C(2y) = 8C(y), from which (9) gives C(6y) = 216C(y).

Therefore (7) now becomes

C(x +3y) — C(z — 3y) = 3C(z + y) — 3C(x — y) + 48C(y),
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and interchanging z and y yields
C(Bz+y)+C(3z —y) =3C(z +y) + 3C(z — y) +48C(x).
Therefore C is cubic by [12].
Secondly, we claim that @ is quadratic. By letting z = y = 0 in (8), we get
Q(0) = 0. If we put z = 0 in (8), we have
Q(6y) = 9Q(2y).

Hence (8) can be written in the form

Q(z +3y) - Q(z — 3y) = 3Q(z +y) — 3Q(x —v)
which implies that @ is quadratic in view of [11].
That is, if f : X — Y satisfies the equation (2), then we have f(z) = C(z)+Q(x)
for all z € X.
(<) Suppose that there exist a cubic mapping C : X — Y and a quadratic

mapping @ : X — Y such that f(z) = C(z) + Q(z) for all z € X.
Since C(2z) = 8C(z), C(3z) = 27C(z), Q(2z) = 4Q(x) and Q(3z) = 9Q(x) for
all z € X, it follows from Lemma 1 and Lemma 2 that
9f(z +y) — 9f(x — y) + f(6y) — 3f(z + 3y) + 3f (= — 3y) — 9 (2v)
=9C(z+y) — 9C(z — y) + C(6y) — 3C(x + 3y) + 3C(z — 3y) — 9C(2y)
+9Q(z + y) - 9Q(z — y) + Q(6y) — 3Q(z + 3y) + 3Q(z — 3y) — 9Q(2y)
= =3[C(z + 3y) + 3C(z — y) — C(x — 3y) — 3C(z + y) — 48C(y)]
—3[Q(z +3y) +3Q(z - y) - Qz - 3y) - 3Q(xz +y)| =0
for all z, y € X. O

3. STABILITY OF EQ. (2)

In this section, X and Y will be a real normed space and a real Banach space,
respectively. Given a function f: X — Y, we set

Df(z,y) = 9f(z +y) - 9f(z —y) + f(6y) — 3f(z + 3y) + 3f(z — 3y) - 97 (2y)
forall z, y € X.

Let ¢ : X x X — [0,00) be a function satisfying one of the conditions (11) and
(12), and one of the conditions (13) and (14) below:

7 n
o(2"z, 2™y) 0
8n

(1) ei(z) = %4- S La(2i) < oo,

%
=0 8

as n — 0o,
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L
(12) e2(zx) := 3 28’a(2_(i+1)x) < oo, 8"¢(27"z,27"y) >0 as n— oo,
i=0
where a(z) i= 6(3,2) + 6(~F,~ 3) + Y632, ) + 63z, ~5)] forallz, y € X,

and

IR R #(2"z,2"y)
(13) e3(x) .—1—2‘221:5(2$)<007 T—)O as n — oo,

1, . )
(14)  e4(z) == 3 > 4i3(27tz) < 00, 4"¢(27"x,2 "y) >0 as n — oo,
1=0

where 8(z) = [6(3,5) + #(~%,~§)] + }[6(0.3) + 6(0,~3)] forall z, y € X.
Theorem 2. If the function f: X — Y satisfies the inequality
(15) IDf(z, y)ll < é(x,y)

for all x, y € X and f(0) = 0, then there exist a unique cubic function C: X —Y
and a unique quadratic function Q : X — 'Y such that

(16) 17(2) ~ (C(@) + Q) < exla) + &5(a)

an) 12D o) < e,
and

(18) |2EIED o) < oy

forallx e X, where k=1 o0r2 and j =3 or 4.
- The functions C and Q are given by
limp, o0 f(2"z)§£(—2"z if ¢ satisfies (11)

(19) Clz) = { lim, 4o, 87 [f(zi") _ f(_zin)] if ¢ satisfies (12)

iMoo LEDHEZD it o satisfies (13)
(20) Q($)={ T

rl1(F) + (%) if 6 satisties (14)

forallz € X.
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Proof. Let g : X — Y be the function defined by g(z) = %[ flx)—f (—x)] for all
z € X. Then we have g(—z) = —g(x) and

(21) 1 Dg(x,v)Il = |99(z + y) — 99(x — y) + g(6y)
— 3g(x + 3y) + 3g(x — 3y) — 99(2y)||

< 5 6(2,9) + 9(-z, )
for all z, y € X. Putting y := z in (21) yields
(22) llg(6x) — 3g(4x) — 29(2z)|| < 3 [¢>(x ) + ¢(—z, —7)],
and setting z := 3y in (21) gives
1

199(4y) — 189(2y) — 3g(6y)|| < 5 [¢(3y,y) + &(~3y, —v)]
which, by letting y := z, becomes
(23)  [199(4e) — 189(20) — 29(62)]| < 5 [#(32,2) + 9(~3z,~2)]

for all z € X. Using (22) and (23), we get

(24) 1249(2z) — 3g(4x)|| < 2||g(6x) — 3g(4x) — 3g(2z)||
+ [199(4z) — 18¢(2z) — 29(62)||
< af2z)

for all z € X. Replacing z by & in (24) and then dividing by 24, we obtain

9(2z)

(25) 9@ -

for all z € X.
Assume that ¢ satisfies the condition (11). Substituting 2z for z in (13) and
dividing by 8, we get

1
< —
“ < 25%(®)

(20 262 - 452 < 55 gec)

for all x € X. An induction argument now implies that

(27) otz

< 24 Z 810&(21%)

for all x € X. We claim that {8 "g(2"z)} is a Cauchy sequence in Y.
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For m < n,
n—1
(28) 18 "g(2"2) — 8™ "g(2™)|| < Y I8 7'g(2'x) — 87TV g(2" )|
- n—1 i
<1 a(2'r)
24 - 8t
t=m

for all z € X. Taking the limit as m — oo in (28), we get

lim ||87"g(2"x) ~ 8 "g(2™x)||=0

m-—o0

for all x € X. Since Y is a Banach space, it follows that the sequence {8 "¢(2"x)}
converges. We define a function C: X — Y by

(29) C(x) = TLILIEOS‘"Q(Q”;C)

for all z € X. It is clear that C(—z) = —C(z) for all z € X, and it follows from
(29) that

IDC(z, )|l = lim 87" Dg(2"z, 2"y)|
1
< lim 8772[9(2"2,2"y) + 9(2"(~2), 2"(~y))] = 0
n—oo
for all z,y € X. Hence C is cubic. To prove the inequality (17), taking the limit in
(27) as n — oo, we have

(30) lg(z) — Cla)|| <exlz)

for all x € X. It remains to show that C is unique. Suppose now that C:X—-Y
is another cubic function satisfying (30). Then it is obvious that C'(2z) = 8C(x) for
all z € X, and so it follows from (30) that
IC(z) ~ C(a)|| = 87|C(2"x) - C(2"a))|
<8 M|C(27z) — g(2"2)| + llg(2"2) — C(2"x)))
<2.8 " (2"x)
for all z € X. By letting n — oo in this inequality, we have C(z) = C(z) for all
€ X
If ¢ satisfies the condition (12), then we replace by £ in (24) and divide by 3

to obtain

lo(@) — 8g(27 1) < za(2"a)
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for all z € X. The rest of the proof is similar to the corresponding part of the proof
of the case (11). Therefore, C : X — Y is the unique cubic function defined by

C(z) = lim 8"¢g(27"x)
n—oo
for all z € X such that
lg(z) — C(z)]| < e2(x)
forallz € X.

Now let h: X — Y be the function defined by h(z) = 3 [f(z) + f(—z)] for all
z € X. Then we have h(—z) = h(z) and

(31) | Dh(z,y)|| = |9h(z + y) — 9h(z — y) + h(6y)

— 3h(z + 3y) + 3h(z — 3y) — 9 (2y)||

< 5 8(z,) + 9~z ~)

for all z, y € X. By setting z := 0 in (31) and then letting y := z, we get
(32 [1(62) — 99(22)1| < 5(9(0,) + 4(0, ~)],
and also replacing y by z in (31) yields
(33) |3h(4z) — 3h(2x) — h(6z)| < = [ o(z,z) + ¢(—z,—x)].
Utilizing (32) and (33), we get
(34) I3R(4z) — 12h(22x)|| < ||3h(4x) — 3h(2z) — h(6z)|| + ||h(6x) — 9h(2z)||

< B(2x)
for all z € X. Replacing z by £ in (34) and then dividing by 12, we obtain
h(2x)
(35) “h(x) ” = 12 Ble)
forall x € X.

Assume that ¢ satisfies the condition (13). Substituting 2z for z in (35) and
dividing by 4, we get

” h(ix - x) | < 12 _ﬁ(zx)
for all € X. By induction we see that
(36) ey - 22D < L Z :

for all z € X. We claim that {47"h(2")} is a Cauchy sequence in Y.
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For m < n,
n_l . . . .
(B 47h(2M) ~ 4T < 3 47R(20) — 4R )|
i=m
1851
< =Y =52
ST 416’(2 x)

for all z € X. Taking the limit as m — oo in (37), we get

lim [[47"h(2"z) — 47" h(2™z)|| =0

m—o0

for all € X. Since Y is a Banach space, it follows that the sequence {4 "h(2"z)}
converges. We define a function C : X — Y by

(38) Q(z) = lim 47"h(2"z)

for all z € X. It is clear that Q(—z) = Q(z) for all z € X, and it follows from (38)
that

IDQ.v)] = lim 4| Dh(2"z, 2"y)|
< lim 42 [6(2"2,27) + 9(2"(-2), 2" (~y))] = 0
for all z,y € X. Hence @ is quadratic. By taking the limit in (36) as n — oo to
prove the inequality (18), we obtain
(39) [h(z) — Q)| < e3(x)

for all z € X. To show that Q is unique, let us assume that é : X — Y is another
quadratic function satisfying (39). Then it is obvious that @Q(2z) = 4Q(x) for all
z € X, and so it follows from (39) that

1Q(z) - Q)| = 4™™|Q(2"z) - Q2"z)]|
<47(|Q(2"z) — h(2")| + [|h(2"z) — Q2 x)|))
<2-47"g3(2"x)

for all £ € X. By letting n — oo in this inequality, we have @(x) = Q(z) for all
z € X.

If ¢ satisfies the condition (14), then we replace z by  in (34) and divide by 3
to obtain

Ih(z) - b2 2)] < 36(272)
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for all z € X. The rest of the proof goes through the corresponding part of the
proof of the case (13). Consequently, we can obtain the unique quadratic function
Q@ : X — Y defined by
N n —-n
Q(z) = lim 4"h(27"z)
for all z € X such that

[h(z) — Q)| < e4(x)
forall z € X.
Since we have f(x) = g(z) + h(z) for all z € X, we see that

I1f(z) = (C(=) + Q@) < llg(z) - C@) + lIh(z) - Q)]
< ex(x) +¢5(x)
for all z € X, where k = 1 or 2 and j = 3 or 4. We complete the proof of the

theorem. O

From Theorem 2, we obtain the following corollary concerning the Hyers-Ulam-
Rassias stability [19] of the functional equation (2).
Let p # 2,3 be any real number. For the convenience, let

1 5437 1 54 37
n) =5 wa—oay 20T 5 w1y

and

1 | 1
B0 = ey 0T paomey

Corollary 1. Let p # 2,3 and 0 > 0 be real numbers. If the function f: X - Y
satisfies the inequality
IDf (@, )l < o(ll=l” + llyll”)

forall z, y € X and f(0) = 0, then there exist a unique cubic function C : X —Y
and a unique quadratic function Q@ : X — Y such that

I1f(2) - (C(x) + Q@) < r(p)8ll=ll”,

”w -C(@H < ri(@)Ollzl? (k=1 or 2),

and

|ZEHTED o) < el (=3 or 4
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for all x € X, where

ro(p) +ra(p) if p>3
r(p) =< ri(p) +ralp) if 2<p<3
ri(p) +r3(p) if p<2.

The functions C and @ are given by

Clay — | imneon L) if p<3
T) = . z .
limp oo 87 [ (&) - F(-&)| >3,
f@rz)—f(-2"x)

B lim, . B if p<3

foralze X.

Proof. Let ¢(z,y) := 0(||z||P+||y||”) for all z € X. If p < 3, then a simple calculation
gives a(2'z) = (5 + 37)26-DPg||z||P, and so we have
1 1
= SN (9 — P
g1(x) = 2 ; 8"01(2%) = r1(p)0||z||
for all z € X. If p > 3, then, by considering a(2~ (D) = (5 4 37)2~(+2)rg| 2P,
we obtain

ea(e) = £ 3 8'a(2 0 a) = ry(p)ee?
=0

for all z € X. On the other hand, suppose that p < 2. Since 5(2iz) = 3-26-DPg||z||P,
we see that

= = el = P
ea(a) = 13 3_ 0(7') = raol
for all © € X. Finally, if p > 2, then we know that

1 ,
cale) = 3 A8 Pa) = ool
because of (2~ 0tV z) = 3. 2-042pg||z||? for all z € X.
Therefore, we deduce that
(r2(p) + ra(p))0|||P if p>3
ex(z) +ej(x) = r@EOlalP = ¢ (ri(p) +ra(P)llz|P if 2<p<3

(r1(p) + r3(p))0ll=|P if p<2

for all z € X. O
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Corollary 2. Let § > 0 be a real number. If the function f : X — Y satisfies the
inequality
IDf(z,y)ll < 6

for all z, y € X and f(0) =0, then there exist a unique cubic function C : X —'Y
and a unique quadratic function Q : X — Y such that

If(z) = (C(z) + Q) < =

- f(— 1
“ f(z) 2f( z) C(x)H <
and
flx)+ f(-=) 2
H 2 B Q(x)“ < g°
foralze X.
The functions C and Q are given by
C(z) :nh—>nolo f(2"z) “Snf(—anU)
and
Q) = Jim 1AL
foralzre X.
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