• Title/Summary/Keyword: Modified Mohr-Coulomb

Search Result 29, Processing Time 0.018 seconds

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

The Introduction of Egg-Cam Clay Model and Elasto-Plastic Analysis of Reinforcement Effect on Buried Pipe (Egg-Cam Clay 모델 제안 및 지중매설관의 보강효과의 탄소성모델 해석)

  • Ahn, Tae-Bong;Cho, Sam-Duck;Kim, Jin-Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.5-14
    • /
    • 2002
  • In this study, stress-deformation characteristics of buried pipe are studied. A numerical model, i.e., Egg-Cam Clay is introduced for the analysis of soft clay. Cam Clay model has a difficulty in analyzing soft clay that has two properties of shrinkage and swelling. Egg-Cam Clay model is modified format of Cam Clay model. In addition, Mohr-Coulomb model using finite element method is employed to verify effects of the geogrid, EPS geofoam. Stress deformation of several cases of pipe and other reinforcemnt material combinations are analyzed. Geofoam and geogrid have positive effects on the deformation characteristics.

  • PDF

Static and Repeat Loads Model Test on Soft Clay Layer due to the Geotextile Reinforcement (토목섬유로 보강된 연약지반의 정.동적 모형실험)

  • Kim, Young-Su;Kwon, Sung-Mok;Kim, Yeun-Wook;Kim, Hyoung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.232-239
    • /
    • 2005
  • Recently geosynthetics that can be constructed on soft ground have been used for reinforcement and separation in various ways. Through laboratory model tests and numerical analysis, in this study, estimated the suitability of cable elements and appropriate input factors considering loading effect in modeling of geosynthetics. First, in laboratory model tests, geosynthetics were constructed on the clay, and covered with the thickness, 7.5cm of sand mat. And then static and dynamic model tests were performed measuring loading, settlement, ground lateral displacement, and displacements of geosynthetics, but, for cyclic loading, bearing capacity increased linearly with stiff slop because cyclic loading with constant cyclic pressure compacted the ground. Numerical analysis were performed with FLAC 4.0 2D using Mohr-Coulomb and Modified Cam-Clay models, and they compared with the results of model tests. Cable elements of FLAC in modeling geosynthetics couldn't consider the characteristics of geosynthetics that increase shear strength between geosynthetics and clay according to the loading increase. Therefore, in this study, appropriate equation that can consider loading effects in Cable elements was proposed by Case Study.

  • PDF

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

  • Ryu, Dong-Man;Lee, Chi-Seung;Choi, Kwang-Ho;Koo, Bon-Yong;Song, Joon-Kyu;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.720-738
    • /
    • 2015
  • This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb failure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

Theoretical model for the shear strength of rock discontinuities with non-associated flow laws

  • Galindo, Ruben;Andres, Jose L.;Lara, Antonio;Xu, Bin;Cao, Zhigang;Cai, Yuanqiang
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.307-321
    • /
    • 2021
  • In an earlier publication (Serrano et al. 2014), the theoretical basis for evaluating the shear strength in rock joints was presented and used to derive an equation that governs the relationship between tangential and normal stresses on the joint during slippage between the joint faces. In this paper, the theoretical equation is applied to two non-linear failure criteria by using non-associated flow laws, including the modified Hoek and Brown and modified Mohr-Coulomb equations. The theoretical model considers the geometric dilatancy, the instantaneous friction angle, and a parameter that considers joint surface roughness as dependent variables. This model uses a similar equation structure to the empirical law that was proposed by Barton in 1973. However, a good correlation with the empirical values and, therefore, Barton's equation is necessary to incorporate a non-associated flow law that governs breakage processes in rock masses and becomes more significant in highly fractured media, which can be induced in a rock joint. A linear law of dilatancy is used to assess the importance of the non-associated flow to obtain very close values for different roughness states, so the best results are obtained for null material dilatancy, which considers significant changes that correspond to soft rock masses or altered zones of weakness.

Seepage Face and Reliability Indexes of Anisotropic Homogenous Dam at Steady State Condition (비등방 균질 댐의 정상상태에서의 침투면과 신뢰성지수)

  • Mahmood, Khalid;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.35-42
    • /
    • 2012
  • This paper evaluates the effect of anisotropic conductivity on the seepage face and reliability index of an homogeneous dam with and without toe drain. The analysis are conducted under steady state saturated-unsaturated seepage condition using finite element method. Various anisotropic conductivity ratios were interpreted under such conditions as the vertical conductivity is reduced while the horizon conductivity is fixed. The shear strength of soil is defined by the modified Mohr-Coulomb failure criterion. The analysis results demonstrate that the length of seepage face and reliability index at the downstream and upstream of the dam increase with an increasing anisotropic ratio. These results of the seepage face and reliability index, however, depend on the total head difference between the upstream slope and downstream toe. The difference in seepage face and reliability index is attributed to the different equipotential head with different anisotropic ratios of the dam material.

A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion (마그마관입에 의한 상부퇴적층의 변형에 관한연구)

  • Min, Kyung Duck;Kim, Won Young
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF