• Title/Summary/Keyword: Modified Flow

Search Result 1,671, Processing Time 0.239 seconds

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Modified high-flow nasal cannula for children with respiratory distress

  • Itdhiamornkulchai, Sarocha;Preutthipan, Aroonwan;Vaewpanich, Jarin;Anantasit, Nattachai
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.3
    • /
    • pp.136-141
    • /
    • 2022
  • Background: High-flow nasal cannula (HFNC) is a noninvasive respiratory support that provides the optimum flow of an air-oxygen mixture. Several studies demonstrated its usefulness and good safety profile for treating pediatric respiratory distress patients. However, the cost of the commercial HFNC is high; therefore, the modified high-flow nasal cannula was developed. Purpose: This study aimed to compare the effectiveness, safety, and nurses' satisfaction of the modified system versus the standard commercial HFNC. Methods: This prospective comparative study was performed in a tertiary care hospital. We recruited children aged 1 month to 5 years who developed acute respiratory distress and were admitted to the pediatric intensive care unit. Patients were assigned to 2 groups (modified vs. commercial). The effectiveness and safety assessments included vital signs, respiratory scores, intubation rate, adverse events, and nurses' satisfaction. Results: A total of 74 patients were treated with HFNC. Thirtynine patients were assigned to the modified group, while the remaining 35 patients were in the commercial group. Intubation rate and adverse events did not differ significantly between the 2 groups. However, the commercial group had higher nurses' satisfaction scores than the modified group. Conclusion: Our findings suggest that our low-cost modified HFNC could be a useful respiratory support option for younger children with acute respiratory distress, especially in hospital settings with financial constraints.

Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model (RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF

Runoff Analysis of Modified TOPMODEL with Subsurface Storm Flow Generation Mechanism (지표하 흐름을 고려한 개선된 TOPMODEL의 유출분석연구)

  • Lee, Hak-Su;Han, Ji-Yeong;Kim, Gyeong-Hyeon;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.403-411
    • /
    • 2001
  • This paper investigates the applicability of a modified version of TOPMODEL considering shallow subsurface storm flow in a forested mountaneous catchment. The macroporous soil structure provides a hydrological pathway for rapid runoff generation. A modified version of TOPMODEL introduces the two-storage system to analyze the hydrograph recession including rapid subsurface storm flow component. The two-month continuous hydrologic simulations of sulmachun watershed suggest that a modified version of TOPMODEL represents comprehensive and realistic flow generation mechanism comparing to those of an original version of TOPMODEL. The results of parameter calibration with Monte-Carlo method indicate a modified version of TOPMODEL produces a set of physically meaningful parameters.

  • PDF

A Study on the Calculation Scheme of Extreme Loading Point and Nose Curves using Modified N-R and Continuation Method (수정N-R법과 연속음형법을 이용한 임계부하점 및 Nose Curve 산정기법 연구)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.712-722
    • /
    • 1992
  • Several voltage instability/collapse problems that have occurred in the electric utility industry worldwide have gained the attention of engineers and researchers of electric power systems. This paper proposes an effective calculation scheme of the extreme loading point and nose curves(P-V curves) using modified Newton-Raphson(N-R) load flow method and the Continuation Method. This method provides detail and visual information of the power system voltage profile and operating margin ro operators and planners. In this paper, a modified load flow claculation method for ill-conditioned power systems is introduced for the purpose of seeking more precise load flow solutions and nose curves, and the Continuation Method is also used as a part of the solution algorithm for the calculation of extreme loading point and nose curves. The conventional polar coordinate based N-R load flow program is modified to avoid numerical difficulties caused by the singularity of the Jacobian matrix occuring in the vicinity of extreme loading point of heavily loaded systems. Application results of the proposed method to Klos-Kerner 11-bus system and modified IEE-30-bus system are presented to assure the usefulness of the approach.

  • PDF

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 특성 해석)

  • Lee Ki-Choon;Kim Chang Jun;Hur Nahmkeon;Jeon Wan Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.631-634
    • /
    • 2002
  • The study of the flow characteristics in two types of turbo-fans for a vacuum cleaner was performed in a previous study. In present study an analysis of a new modified model to reduce fan noise was performed by using CFD. The characteristics of three models calculated for various rotating speeds and flow rates are obtained and compared with available measured data. The results show that the modified model gives stable flow characteristics in operating range than the original model, while both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and thus the peak pressure at BPF can be relieved, it is anticipated that the modified model gives much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements.

  • PDF

Reactive Reserve based Contingency Constrained Optimal Power Flow to Enhance Interface Flow Limits in Terms of voltage Stability

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.27-32
    • /
    • 2001
  • This paper presents a concept of reactive reserve based contingency constrained optimal power flow (RCCOPF). RCCOPF for enhancement of interface flow limit is composed of two modules, which are the modified continuation power flow (MCPF) and reactive optimal power flow (ROPF). In RCCOPF, two modules are repeatedly performed to increase interface flow margins of selected contingent states until satisfying the required enhancement of interface flow limit. In numerical simulation, a simple example with New England 39-bus test system is shown.

  • PDF

Reactive Reserve based Contingency Constrained Optimal Power Flow to Enhance Interface Flow Limits in Terms of Voltage Stability

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.11 no.X00
    • /
    • pp.27-32
    • /
    • 2001
  • This paper presents a concept of reactive reserve based contingency constrained optimal power flow (RCCOPF). RCCOPF for enhancement of interface flow limit is composed of two modules, which are the modified continuation power flow (MCPF) and reactive optimal power flow (ROPF). In RCCOPF, two modules are repeatedly performed to increase interface flow margins of selected contingent states until satisfying the required enhancement of interface flow limit. In numerical simulation, a simple example with New England 39-bus test system is shown.

Experimental Analysis of Flow Fields inside Intake Heads of a Vacuum Cleaner

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.894-904
    • /
    • 2005
  • The flow structure inside the intake head greatly affects the working efficiency of a vacuum cleaner such as suction power and aero-acoustic noise. In this study, the flow inside intake heads of a vacuum cleaner was investigated using qualitative flow visualization and quantitative PIV (Particle Image Velocimetry) techniques. The aerodynamic power, suction efficiency and noise level of the intake heads were also measured. In order to improve the performance of the vacuum cleaner, inner structure of the flow paths of the intake head, such as trench height and shape of connection chamber were modified. The flow structures of modified intake heads were compared with that of the original intake head. The aero-acoustic noise caused by flow separation was reduced and the suction efficiency was also changed due to flow path modification of intake head. In this paper, the variations of flow fields for different intake heads are presented and discussed together with results of aerodynamic power, suction efficiency and noise level.

Numerical Optimization of the Coolant Flow Rates through Cylinder Head Gasket Holes by applying CFD Techniques (CFD 기법을 이용한 실린더헤드 가스켓홀 통과 유량의 최적화)

  • 백경욱;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.121-128
    • /
    • 2000
  • Simple design methods were developed to control the coolant flow rates through cylinder head gasket holes. Applying the concept of flow through an obstruction the ratio of intake to exhaust side flow rates could be easily controlled while maintaining the flow rates per cylinder of the original model. Flow distribution in the coolant passage of the original model was calculated by CFD and the flow rates at the gasket holes were modified based on the calculation results. The calculated flow rated of the modified gasket holes were reasonably close to target values. For more accurate control of the flow rate distribution, a design method with iterative CFD calculations was also suggested. The final size of gasket holes for the target flow rates were obtained just after a few optimization iterations. These methods can be very useful for the optimization of heat transfer characteristics in engine cylinder head and block.

  • PDF