• 제목/요약/키워드: Modified $k-\varepsilon$ turbulent

검색결과 47건 처리시간 0.021초

RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석 (Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF

점탄성 유체의 난류 해석을 위한 수정된 $k-{\varepsilon}$ 난류모델 개발 및 혈류역학에의 적용 (DEVELOPMENT OF A MODIFIED $k-{\varepsilon}$ TURBULENCE MODEL FOR VISCO-ELASTIC FLUID AND ITS APPLICATION TO HEMODYNAMICS)

  • 노경철;유홍선
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.1-8
    • /
    • 2010
  • This article describes the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body. Numerical analyses for turbulent blood flow were performed with different magnitude of periodic accelerations using a modified turbulence model which was considering drag reduction of non-Newtonian fluid. The blood was considered to be a non-Newtonian fluid which was based on the power-law viscosity. In order to validate the modified $k-{\varepsilon}$ model, numerical simulations were compared with the standard $k-{\varepsilon}$ model and the Malin's low Reynolds number turbulence model for power-law fluid. As results, the modified $k-{\varepsilon}$ model represents intermediate characteristics between laminar and standard $k-{\varepsilon}$ model, and the modified $k-{\varepsilon}$ model showed good agreements with Malin's verified power law model. Moreover, the computing time and computer resource of the modified $k-{\varepsilon}$ model were reduced about one third than low Reynolds number model including Malin's model.

HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구 (Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct)

  • 정수진;류수열;김태훈
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측 (Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model)

  • 김성구;오군섭;김용모;이창식
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價 (Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

수정 난류모델에 의한 후향계단 유동예측 (Prediction of a Backward-Facing Step Flow with Modified Turbulence Models)

  • 명현국;백인철;한화택
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

수정된 Extendel $k-\varepsilon$ 난류모델을 사용한 $90^{\circ}$곡관 내의 난류유동에 관한 수치해석적 연구 (Numerical Computations of Turbulent Flow in a $90^{\circ}$ Curved Duct Using a Modified Extended $k-\varepsilon$ Turbulence Model)

  • 정수진;김태훈;조진호
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.139-146
    • /
    • 1996
  • An extended $k-\varepsilon$ tuebulence model modified by considering the streamline curvature effect and standard $k-\varepsilon$ turbulence model have been applied for three dimensional analysis of turbulece flow in a $90^{\circ}$ curved duct. By comparision of the results with the experimental data, the modified extended $k-\varepsilon$ model gave closer agreement with experimental data than the results from standard $k-\varepsilon$ model owing to an extra time scale of the production rate and parameter describing effects of streamline curvature included in the dissipation rate equation.

  • PDF

표면에 부착된 장애물 주위의 난류전단유동에 관한 수치해석 (Numerical Simulation on Turbulent Shear Flows over Surface-Mounted Obstacles)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2593-2600
    • /
    • 1996
  • A modified k-$\varepsilon$ turbulence model having a generality is proposed in the present study, in which the constant $C_{\varepsilon2}$in the $\varepsilon$-equation is simply changed as a functional form of a new parameter both satisfying the tensor invariant condition and representing the extra straining effect on complex shear flows. With this model turbulent shear flows over two-dimensional obstacles placed in a channel are numerically studied for different blockage ratios and aspect ratios. Comparing with the available experimental data, the predicted results with the present model provide definite improvements over the standard model's results and work fairly well with the experimental data on the size of the recirculation zone, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds stresses.

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Hasebe, Hiroshi;Nomura, Takashi
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.21-47
    • /
    • 2009
  • The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.

다양한 $k-{\varepsilon}$ 난류모델과 Skew-Upwind 기법에 의한 단이 진 벽면분류에 대한 수치해석 (Numerical Analyses on Wall-Attaching Offset Jet with Various Turbulent $k-{\varepsilon}$ Models and Skew-Upwind Scheme)

  • 서호택;부정숙
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.224-232
    • /
    • 2000
  • Four turbulent $k-{\varepsilon}$ models (i.e., standard model, modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the turbulent flow of wall-attaching offset jet. For numerical convergence, this paper develops a method of slowly increasing the convective effect induced by skew-velocity in skew-upwind scheme (hereafter called Partial Skewupwind Scheme). Even though the method was simple, it was efficient in view of convergent speed, computer memory storage, programming, etc. The numerical results of all models show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show some deviations in ·second order (i.e., kinetic energy and its dissipation rate). Like the previous results obtained by upwind scheme, the streamline curvature modification results in better prediction, while the preferential dissipation modification does not.