• Title/Summary/Keyword: Modern Warfare

Search Result 103, Processing Time 0.025 seconds

A Network QoS Model for Joint Integrated C4I Structure (합동지휘통제 통합망 구조 QoS 모델(안))

  • Park, Dongsuk;Oh, Donghan;Choi, Eunho;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.106-114
    • /
    • 2020
  • NCW which is shaping favorable conditions with obtaining initiative through superiority in C2 and information sharing is critical to the result of the war in a modern warfare. An important requirement to attain superiority through an effective networking in a war-environment is to apply QoS to ensure priority in supporting critical mission and services. In order to obtain an effective NCOE through JCS-led QoS support, standard doucments have been reviewed and analyzed to understand the current level of technology and development. In addition, QoS-related policy documents which is currently being applied by the ROK armed forces have been analyzed to substantiated the JCS-led QoS model and propose the directions of development and enhancement required in the realm of technology, policy and system.

A proposal of new MOE to assess the combat power synergistic effect of warfare information system. (전장 정보체계의 전투력 상승효과 측정을 위한 새로운 MOE 제안)

  • Lee, Yong-Bok;Kim, Yong-Heup;Lee, Jae-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.104-112
    • /
    • 2008
  • In modern war information system development makes battlefield materialize, and combat factors can maximize combat power exhibition as that apply synchronization. Information system is the core of combat power operation under NCW(Network centric Warfare). This paper proposed a new MOE(Measure of Effectiveness) that can assess the combat power synergistic effect of information system at the theater joint fire operation in NCW environment. This methodology applied the rule of Newton's second law $F=(m{\Delta}{\upsilon})/t{\Rightarrow}(M{\upsilon}I)/T$) Details factor in combat power evaluation is as following. (1) M : Network power; (2) v : Movement velocity; (3) I : Information superiority; (4) T : C2(command and control) time. We applied this methodology to the "JFOS-K(Joint Fire Operating System-Korea) in Joint Chief of Staff" in the real military affair section.

  • PDF

Performance Analysis of Efficient Subchannelization Algorithm against Partial Band Jamming (부채널화를 통한 효율적인 부분대역 재밍 회피 알고리즘과 성능분석)

  • Song, Yu Chan;Hwang, Yu Min;Park, Ji Ho;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.14-18
    • /
    • 2015
  • Electronic warfare recently has became the core of modern warfare and the importance of communication survivability is being considerable day by day. In this paper, we propose an effective jamming avoidance algorithm aginst widely used jamming environment such as GPS jamming. In order to simulate to show our system performance, we consider IEEE 802.16 WiMAX protocol and partial band jamming envoriment. Proposed algorithm can improve channel capacity through subchannelization and we show channel capacity corresponding to subchannel parameter.

A Proposal of Spectrum COP Design for Effective Frequency Management in Air Force's Battlefields Environment (공군 전장 환경에서 효과적 주파수 관리를 위한 Spectrum COP 설계 제안)

  • Koo, Ja-Yeul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1033-1040
    • /
    • 2012
  • Recently, several researches are focused on the frequency sharing and the liberalization of frequency use for utilizing the limited frequency resources efficiently. In military, as Network Centric Warfare(NCW), which requires significant mutual operability of battle elements and real-time operation speed, has come to the fore front as an important aspect of modern warfare, the methods to manage limited frequency resources in wireless communications environment efficiently has been studied and utilized. In this paper, we propose a Spectrum COP(Common Operation Picture) design suitable for the battlefields of air force. To construct the Spectrum COP of Air Force, we analyze the requirements and design the frequency management system by using EA(Enterprise Architecture) Framework. The simulation results of the proposed design proved the effectiveness by using EADSIM(Extended Air Defense Simulation) of Air Force.

A Study on Test & Evaluation Technique of RWR/CMDS for Survivability Improvement (생존성 향상을 위한 RWR/CMDS 시험평가 기술 연구)

  • Kim, Chanjo;Jang, Youngbae;Kim, Hyeongkyeong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.84-89
    • /
    • 2016
  • Electronic Warfare (EW) is the mission area responsible to establish and maintain a favorable position in the electromagnetic domain. Testing and Evaluation of EW devices on modern military aircraft to pursue this critical mission area require the use of a wide range of techniques and analytical methods to assure users of the readiness of EW system to meet the challenge of a combat environment. This paper is intended as an introductory text dedicated to EW systems (especially RWR, CMDS) test and evaluation techniques and will serve experienced engineers and program managers, as well as novice engineers, as a concise reference for EW systems' test and evaluation processes and testing resources.

A Study for Ammunition Integrated Logistics Support System Development (탄약종합군수지원 업무체계 발전에 관한 연구)

  • Han, Ho Seok;Lee, Young Uk
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.23-30
    • /
    • 2015
  • Integrated Logistics Support can effectively respond to future wars and through the smooth logistics support activities bring a win in wars. Future warfare is very complex compare to Modern Warfare and required high level of strategies and tactics. Also, it is expected that the future war will be high-intensity war using high-tech weapon systems. Therefore, in this study, I look forward to the effective logistic support through the development of ammunition integrated logistics support which is a part of integrated logistics support(ILS). In addition, by studying a step-by-step system and supporting element of ammunition integrated logistics support, we can find the errors related to ammunition integrated logistics support system and suggest the direction to improve the system.

Interrelation Analysis of UGV Operational Capability and Combat Effectiveness using AnyLogic Simulation (애니로직 시뮬레이션을 이용한 무인지상차량 운용성능과 전투효과의 연관성 분석)

  • Lee, Jaeyeong;Shin, Sunwoo;Kim, Junsoo;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In modern warfare, the number of unmanned systems grow faster than any other weapon systems. Therefore, it is very important to predict and measure the combat effectiveness (CE) of unmanned weapon systems in battlefield for deciding defense budget to acquire those systems. In general, quantitative calculation of weapon effectiveness under complicated battlefield is difficult based on the future network centric warfare. Hence, many papers studied how to measure the combat effectiveness and tried to study a lot of related issues about it. However, there are few papers dealing with the relationship between the UGV (Unmanned Ground Vehicle)'s performance and CE in a ground battlefield. In this paper, we do the sensitivity analysis based on a given scenario in a small unit battle. In order to do that, we developed simulation model using AnyLogic and changed the input parameters such as detection and hitting probabilities. We also assess the simulation outputs according to the variation of input parameters. The MOE used in this simulation model output is survival ratio for Blue force. We hope that this paper will be useful to find which input variable is more effective to increase combat effectiveness in a small unit ground battlefield.

A study on intra-pulse modulation recognition using fearture parameters (특징인자를 활용한 펄스 내 변조 형태 식별방법에 관한 연구)

  • Yu, KiHun;Han, JinWoo;Park, ByungKoo;Lee, DongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.754-756
    • /
    • 2013
  • The modern Electronic Warfare Receivers are required to the current radar technologies like the Low Probability of Intercept(LPI) radars to avoid detection. LPI radars have features of intra-pulse modulation differ from existing radar signals. This features require counterworks such as signal confirmation and identification. Hence this paper presents a study on intra-pulse modulation recognition. The proposed method automatically recognizes intra-pulse modulation types such as LFM and NLFM using classifiers extracted from the features of each intra-pulse modulation. Several simulations are also conducted and the simulation results indicate the performance of the given method.

  • PDF

Development of VGPO/I Jamming Technique for Phase Sampled DRFM (위상 샘플방식 DRFM에 적용 가능한 VGPO/I 재밍기법 기술 구현)

  • Choi, Young-Ik;Hong, Sang-Guen;Lee, Wang-Yong;Park, Jin-tae;Lee, Chang-hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1105-1111
    • /
    • 2016
  • In modern warfare, various target tracking radars are used for target location tracking. So, the importance of EA radar jamming technique which disrupt enemy target tracking radar in oder to neutralize tararget location tracking has increased. VGPO/I jamming is a base technique of EA(Electronic Attack), it is possible to operate to pulse-Doppler radar. In this papar, we develop VGPO/I jamming technique that can apply to phase sampled DRFM by using phase information and verifiy through simulations.

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.