• 제목/요약/키워드: Modeling methodology

검색결과 1,770건 처리시간 0.032초

Vehicle Interior Noise Analysis Using Frequency Response Function Based Substructural Method (주파수응답함수의 부분구조합성 법을 이용한 차 실내소음 예측)

  • 허덕재;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제11권4호
    • /
    • pp.5-12
    • /
    • 2001
  • This paper presents the simulation methodology of the interior noise of vehicle using the frequency response function based hybrid modeling of the system which consists of multi-subsystem models obtained by the test or analysis. The complex systems such as a trimmed body of high modal density and a powertrain were modeled by using experimental data, and a sub-frame of a vehicle of low modal density was modeled by finite element data. Modeling of the whole system was executed and validated in the two stages. The first stave is combining the trimmed body and the sub-frame, and the second stage is attaching the powertrain, which is a exciting source, to the combined model of the first stage. The input force to the system was modeled as an equivalent force in the virtual space, which was obtained from impedance method using the FRFs of the powertrain and the responses. The interior noise predicted by the proposed method was very close to the direct measurement, which showed feasibility of the proposed modeling procedure. Since the methodology is easily applied to both the transfer path analysis of structure-borne noise and the analysis of noise contribution of a sub-system, it is expected to be a strong tool for design change of a vehicle in the earlier stare.

  • PDF

A Study on the Business Process Model for sustainable Supply Chain (지속가능한 공급사슬(Supply Chain)을 위한 비즈니스 프로세스 모델 연구)

  • Ahn, Kyeong Rim;Lee, Ju Yeon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제10권1호
    • /
    • pp.181-193
    • /
    • 2014
  • The environment of supply chains is rapidly changed to global and eco-freindly work process. However, at current environment, it is not easy to grasp work flow and to analyze energy efficiency. Improving energy efficiency and visibility for goods flow can contribute to increases in customer attitudes and reductions in overall production costs Additionally, it can lead to increases in work efficiency and reductions in overall production costs. Until recently, efforts to improve energy performance focused on manufacturing industry. Those efforts have expanded to the supply chain. In this paper, we perform business process modeling about supply chain for visibility and sustainability - information and component flows - from assembly plants to logistics. This paper defines the work and information flows by modeling the underlying logical structures of the supply chain and the business processes that determine impact of visibility and sustainability. We model processes using the modeling methodology specified by UN/CEFACT. This methodology explains business process functionality and business transactions by UML diagram. The output of this paper would be useful in grasping work flow and capturing the used energy.

A Low-Power Design and Implementation of the Portable Device for Measuring Temperature and Humidity Based On Power Consumption Modeling (소비 전력 모델링에 입각한 휴대용 온습도 측정기의 저전력 설계 및 구현)

  • Lee, Chul-Ho;Hong, Youn-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권2호
    • /
    • pp.1027-1035
    • /
    • 2014
  • The most important design factor for portable devices is power consumption. In this paper, in the early design stage of a mobile device which measures temperature and humidity a power consumption model will be proposed and then the overall power consumption will be estimated based on this model. We will verify previously the correctness of such estimated power consumption before implementation of the real device. That is our proposed design methodology based on power consumption model. An improved design method for efficiently reducing the current consumption in the idle mode is also presented. By implementing a real prototype of the mobile device for measuring temperature and humidity, the correctness of our proposed design methodology based on power consumption modeling will be verified.

Study on Small-signal Modeling and Controller Design of DC-DC Dual Active Bridge Converters (DC-DC Dual Active Bridge 컨버터의 소신호 모델링 및 제어기 설계에 관한 연구)

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Jin-Tae;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제22권2호
    • /
    • pp.159-165
    • /
    • 2017
  • Small-signal modeling and controller design methodology are proposed to improve the dynamics and stability of a DC-DC dual active bridge (DAB) converter. The state-space average method has a limitation when applied to the DAB converter because its state variables are nonlinear and have zero average values in a switching period. Therefore, the small-signal model and the frequency response of the DAB converter are derived and analyzed using a generalized average method instead of conventional modeling methods. The design methodology of a lead-lag controller instead of the conventional proportional-integral controller is also proposed using the derived small-signal model. The accuracy and performance of the proposed small-signal model and controller are verified by simulation and experimental results with a 500 W prototype DAB converter.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

A study of parametric design methodology for 3D modeling parameters of biomorphic clothing sculpture (파라메트릭 디자인 방법론을 적용한 바이오모픽 의상조각 모델링 프로세스와 구성요소 분석)

  • Yoo, Young-Sun;Cho, Min-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • 제21권2호
    • /
    • pp.109-122
    • /
    • 2019
  • The purpose of this study is to examine the clothing component information and attributes as the control parameters for the 3D modeling process of the biomorphic clothing sculpture using a parametric methodology. The 3D modeling parameters of biomorphic clothing sculpture were identified as exaggerated silhouette, surface texture, and digital color. The types of exaggerated silhouettes were shoulder and hip exaggeration, shoulder exaggeration, hip exaggeration, vertical exaggeration, and horizontal exaggeration. The types of surface texture were embossed, lacy, furry, and complex textures. The types of digital color were chrome, blur, blend, and acid colors. The characteristics of morphological representation due to the attributes of these control variables were identified as morphological variation, organic morphology, organizational morphology, and realistic morphology. As a result, it was found that the parameter attributes were applied to the biomorphic clothing sculpture parametric design process and developed into various shapes.

GIS Data Modeling Plan for Tidal Power Energy Development in Incheon Bay of Korea (인천만 조력에너지 개발을 위한 GIS 데이터모델링)

  • Oh, Jung-Hee;Choi, Hyun-Woo;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.166.2-166.2
    • /
    • 2011
  • Incheon Bay of Korea is one of the most famous regions for high tidal range. Ministry of Land, Transport and Maritime Affairs(MLTM) has implemented preliminary investigation for tidal power energy development in this area since 2006. Through field observations, various kinds of marine data consisting of depth and geography, marine weather, tidal currents, wave, seawater characteristics, geology, marine ecosystem and marine environment were gathered. To use these data efficiently for the determining of feasibility of developing and appropriateness of project scale, spatial data management and application system is essential. Therefore, in this study, the concept, methodology and procedure of spatial data modeling are defined for tidal energy development. Spatial data modeling consists of essential model relating to tidal energy directly and optional model including environmental factors. Essential model is composed with fundamental elements like as depth, geography, and several numerical modeling results(tide, tidal current, wave).

  • PDF

Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong;Yu, David C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.451-459
    • /
    • 2008
  • Accurate load modeling is essential for power system static and dynamic analysis. By the nature of the problem of parameter estimation for power system load modeling using actual measurements, multiple local optimal solutions may exist and local methods can be trapped in a local optimal solution giving possibly poor performance. In this paper, Trust-Tech, a novel methodology for global optimization, is applied to tackle the multiple local optimal solutions issue in measurement-based power system load modeling. Multiple sets of parameter values of a composite load model are obtained using Trust-Tech in a deterministic manner. Numerical studies indicate that Trust-Tech along with conventional local methods can be successfully applied to power system load model parameter estimation in measurement-based approaches.

A Study on Discrete-Continuous Modeling Methodology for Supply Chain Simulation (공급사슬시뮬레이션을 위한 이산-연속 모델링 방법에 관한 연구)

  • 김서진;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 한국시뮬레이션학회 2000년도 추계학술대회 논문집
    • /
    • pp.142-149
    • /
    • 2000
  • Most of supply chain simulation models have been developed on the basis of discrete-event simulation. Since supply chain systems are neither completely discrete nor continuous, the need of constructing a model with aspects of both discrete-event simulation and continuous is provoked, resulting in a combined discrete-continuous simulation. Continuous simulation concerns the modeling over time of a system by a representation in which the state variables change continuously with respect to time. In this paper, an architecture of combined modeling for supply chain simulation is proposed, which presents the equation of continuous part in supply chain and how these equations are used supply chain simulation models. A simple supply chain model is demonstrated the possibility and the capability of this approach.

  • PDF

Agent-based Colored Petri Net Modeling of Grid Information Flows : Modeling of Wide Area Protection System (에이전트 기반 컬러 페트리 넷을 이용한 전력 계통의 정보 흐름 모델링: 광역 보호 시스템에의 적용)

  • Park, Byung-Sung;Hur, Kyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권7호
    • /
    • pp.1347-1353
    • /
    • 2011
  • While most of the existing protection schemes have been designed with local information around individual components, these local schemes are not considered capable of protecting the modern electric power gird with growing complexity. Recent blackouts in North America and Europe have renewed the emphasis on coordinated protection and control actions to avoid systemwide blackouts, utilizing all of the available grid information. Thus, this paper proposes a new methodology, Agent-based Colored Petri Net (ACPN) modeling for systematically representing, modeling and analyzing information flows and interactions among the entities of the electric power grid. The paper demonstrates its efficacy and accuracy by investigating an ACPN model of a wide area protection system for a typical power grid. The proposed modeling and analysis schemes may further provide a framework to help assure reliability and interoperability of diverse smart grid components.