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Trust-Tech based Parameter Estimation and its Application to Power
System Load Modeling

Byoung-Kon Choi', Hsiao-Dong Chiang** and David C. Yu*

Abstract — Accurate load modeling is essential for power system static and dynamic analysis. By the
nature of the problem of parameter estimation for power system load modeling using actual
measurements, multiple local optimal solutions may exist and local methods can be trapped in a local
optimal solution giving possibly poor performance. In this paper, Trust-Tech, a novel methodology for
global optimization, is applied to tackle the multiple local optimal solutions issue in measurement-
based power system load modeling. Multiple sets of parameter values of a composite load model are
obtained using Trust-Tech in a deterministic manner. Numerical studies indicate that Trust-Tech along
with conventional local methods can be successfully applied to power system load model parameter

estimation in measurement-based approaches.
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1. Introduction

Given a load model structure, the measurement-based
approach is currently one of the well-recognized methods for
deriving model parameter values [2]. The measurement-
based approach derives parameter values of given load model
structures by using field measurement data taken at load
buses for which load models are to be developed. This
approach has the advantage of directly measuring actual load
behaviors during system disturbances so that accurate
parameter values can be obtained in the form needed for
existing power system analysis and control programs [2], [3].

The task of load model parameter estimation using
actual measurements is usually formulated as a
(constrained) nonlinear least squares problem, where the
mismatch between the simulated load model output and
the actual measurement is minimized [4-10]. However, it
is known that the objective function may have multiple
local optimal solutions by nature of the problem [5], [11,
12]. Hence, local methods such as gradient-based
optimization techniques can potentially lead to a local
optimal solution. The obtained local optimal solution may
not satisfy model validation criteria. Even if the local
optimal solution satisfies the validation criteria, it still
demonstrates inferior modeling performance to a global
optimal solution.
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The multiple local optimal solutions issue in
measurement-based power system load modeling has not
been discussed in detail in the literature. Several papers
briefly address the multiple local optimal solution issue;
the authors in [11] mention the issue of multiple sets of
parameters for different initial values in parameter
estimation of an exponential type static load model (Type
2B in [11]). The authors in [12] suggest global
optimization techniques such as the adaptive simulated
annealing (ASA) to solve the issue and the authors in [15]
apply genetic algorithms (GA) for finding optimal
solutions for parameter values of a composite dynamic-
static model (CDSM). However, most of the approaches
reported in the literature to the load model parameter
estimation are stochastic approaches, the results of which
may not be reproduced with the same initial condition.

In this paper, Trust-Tech [17], a novel methodology for
a global optimization, is introduced and applied to a
parameter estimation task for two composite load models;
ZIP-induction motor (ZIP-IM) model where a static ZIP
model is connected to an induction motor in parallel. The
parameter estimation task is formulated as a special
constrained nonlinear optimization problem where
inequality conditions for certain parameters should be
satisfied during the complete parameter estimation process.
The Trust-Tech method searches feasible parameter space
for local optimal solutions in a tier-by-tier manner with
the aid of a local method. The numerical results show that
Trust-Tech can be successfully applied to load model
parameter estimation problems for the purpose of
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obtaining superior optimal solutions by guiding local
methods.

2. Problem Preliminaries

The key objective of load model parameter identifi-
cation using measurement data is to identify accurate
parameter values whereby the model output is as close to
the measured output as possible. An overall procedure for
identifying a load model is described in the following:

Step 1. Obtain a set of input-output data derived from a
set of measurements.

Step 2. Select a load model structure.

Step 3. Estimate its parameters using a suitable method
and estimation criterion.

Step 4. Validate the derived model with the parameters
obtained in Step 3.

Step 5. If the validation criterion is not met, take remedial
actions; for example, try another estimation
method, or try another model structure and return
to Step 3.

In Step 2, physically based load model structures are
usually adopted since good insights into model structures
can be often obtained from domain knowledge. A
physically based load model can be generally represented
as follows:

z(t,p) = f(z(t, p), u(®), p), z,=z(t,)=T(p) (1
¥(t, p) = g(z(t, p), u(t), p) 2

where z is a vector of state variables; u is a model
input vector; y is model output; p is an n, -
dimensional parameter vector; and f, g,I" are vectors
of differentiable nonlinear (or linear) functions of p and

t. In case of a static load model, the dynamic-algebraic
equations (DAEs) are reduced to only algebraic equation
(2) without dynamic states.

In Step 3, the parameter estimation task is often
formulated as a constrained nonlinear least squares
problem using an output error function that can be
computed from measurement output and model output.
The (output) error function is minimized as follows:

2

min &(p) = rgéi?%g(ym (k)= y(k, p)) G

) h(p)=0 forie E={l,--,n}
s.t.
h(p)<0 forje]z{l,---,n,.}

where pe®R” denotes a parameter vector to be
estimated; N and Z are the total number of samples
used for estimation and the feasible parameter space
respectively; y (k) and y(k) are the measured value
and the model output at the k™ sample, respectively; and

h(p) and h(p) represent equality and inequality
constraints on p.

It is clear that the objective error function &(p)in (3)
is nonlinear and can be non-convex [20]. Hence, multiple
local optimal solutions may exist, which implies that local
methods such as the gradient-based local optimization
techniques can be trapped in a local minimum.

The inequality constraints #,(p) in (3) can be

transformed into equality constraints by introducing slack
variables s={s,} with j=1---,n:

i

h(p)+s; =0 for jel={,,n} (€]

By combining the slack variables with parameters, the
original problem can be represented as follows:

. . :
min £(x) = min—> (3, (k)= y(k,x)) Q)
k=1
st. H(x)=0 for ieE={l,---,n, +n}

T

where  x(eR")=[p,s]" =[p,,-p, .8, 8,1 and

n= n, +n, . Letusdefine H(x)=[H (x),.H,_, T .

Evaluation of the objective function is the most basic
but important task in solving the parameter estimation
problem. For static models, it is straightforward to obtain
model output with given parameters and model inputs. It
is, however, necessary to solve a set of differential
equations for dynamic or composite load models to
evaluate objective function value. The initial state z, can
be obtained from steady state condition, which is
represented by a set of functions of parameters.
Constraints on certain parameters are necessary to enforce

for the existence of initial state z, . Note that the

constraints for the existence of initial state z, should

always be satisfied during the entire parameter estimation
process; otherwise evaluation of objective function value
will fail.

3. Trust-Tech Methodology

The Trust-Tech methodology provides a framework
and computational schemes for locating multiple local
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optimal solutions in a systematic manner. With a suitable
mathematical transformation, the Trust-Tech methodology
achieves this capability with the aid of knowledge of
stability boundaries and completely stable dynamical
systems [17 - 19]. Compared to other stochastic type
algorithms developed for identifying multiple solutions,
Trust-Tech based algorithms have an appealing feature of
deterministically locating multiple local optimal solutions
in a tier-by-tier manner.

The Trust-Tech constrained methodology considers the
constrained nonlinear programming problem described in
(3) or (5). The difficulties of solving problem (5) are well
recognized. First, the feasible region may be composed of
several disconnected feasible components in the entire
search space. Second, there may be multiple local optimal
solutions inside each feasible component.

Instead of directly solving the constrained optimization
problem (5), Trust-Tech solves this problem by defining
two respective dynamical systems: “Quotient Gradient
System” (QGS) and “Projected Gradient System” (PGS)
[17, 18]. The QGS is designed to locate multiple feasible
components. The PGS is designed to locate multiple local
optimal solutions lying within each feasible component.
Through some trajectories of these two dynamical systems,
the Trust-Tech method can locate multiple local optimal
solutions in each disconnected feasible component.

3.1 Phase I (QGS Phase)

The quotient gradient system (QGS) is defined as
follows:

() =-J,(x)" - H(x) (6)

where J, (x)is the Jacobian matrix of the constant vector
function H{x). It is proved that a stable equilibrium
manifold of (6) corresponds to a feasible component of (5).
And if ¥ is a stable equilibrium manifold of (6), then it

is a local optimal solution of the following optimization
problem:

min £(x) = min %NH(X)HZ 0

where xe®R”. E(x)is called the energy function of
QGS.

Therefore, all or multiple disconnected feasible
components of problem (5) can be identified through
locating all or multiple stable equilibrium manifolds of
QGS. The conceptual QGS algorithm can be briefly
described as follows:

Step 1. Create a path leading away from the initial stable
equilibrium manifold to reach the stability
boundary.

Step 2. Follow the stability boundary to identify the
unstable equilibrium manifold separating the
initial and target stable equilibrium manifolds.

Step 3. Go outwards to cross the stability boundary from
the identified unstable equilibrium manifold and
follow the trajectory to locate the adjacent stable
equilibrium manifold.

3.2 Phase I1 (PGS Phase)

To overcome the difficulty of searching multiple local
optimal solutions within each identified feasible
component by Phase I, we explore some trajectories of the
following projected gradient system (PGS):

x(t) = =P, (x(1))- VI (x(r)) (3)
where P, (x)= (I = J,,(x) -[J, (x)J,(x)" T"-J,(x)) with
identity matrix 7 € R""and
Vf(x(t)) =[af /0x,,--,0f 10x,]" .

The basic idea of the projected gradient system (8) is to
apply the projection matrix to restrict the trajectory to
follow the direction of the minus gradient vector projected
onto the tangent space of the stable equilibrium manifold.
With the projection matrix, the trajectory will stay inside
the same stable equilibrium manifold. The minus gradient
vector and the projection matrix ensure that the trajectory
converges to a stable equilibrium point (SEP) inside the
stable equilibrium manifold. This SEP will be a local
optimal solution of (5). Hence, it is sufficient to consider
the optimal solutions of (5) through the SEPs of the PGS.

To identify the target SEP from an initial SEP, it
suffices to develop a mechanism to penetrate the stability
boundary from the initial stability region to reach the
target stability region with the aid of the so-called
‘decomposition point’” on the boundary [17]. This leads to
the following conceptual algorithm:

Step 1. Create a path moving away from the initial SEP to
reach the stability boundary.

Step 2. Follow the stability boundary to identify the
decomposition point separating the initial and the
corresponding SEPs.

Step 3. Go outwards to cross the stability boundary from
the identified decomposition point and follow the
trajectory to locate the adjacent SEP.

It is noted that Step 2 is computationally complex and
can be very time consuming. In this study, a simpler but
efficient algorithm called “exit point method” is used. In
the exit point method, once the boundary is detected at
Step 1, the search procedure can directly move across the
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boundary and enter the stability region of the
corresponding SEP. Afterwards, the procedure follows the
trajectory to search for the corresponding SEP.

A disadvantage of this algorithm is that it is possible to

locate the same SEP along different search directions.
However, compared to the computational complexity of
Step 2, the exit point method can be more efficient than
the original algorithm.

Step 3 involves integration of PGS with an initial point
obtained from Step 2. Instead of integrating PGS until a
SEP is reached, an efficient local optimization solver can
be employed to solve the original nonlinear programming
problem (5).

To appreciate a feature of constrained Trust-Tech, the
details of the Step 1 procedure are presented in the

following. Given an initial SEP x. and initial search

direction d, the goal of this procedure is to generate a
sequence of points to approach the corresponding stability
boundary and to identify the corresponding "exit point". It
is numerically implemented as follows: Initialization.

Set x,=x, and i=0.
Stepl. y, =x+7-d.

Step 2. x,, =X, +F,(x) (¥, —X).
Step3.If f(x,,)= f(x,), then set
d=(x,—x)/

otherwise, x,, =x,

i+l *

x,, —x|, i=i+1 and go to Step 1;

i+

In each iteration, one point y, is generated from a
feasible point x, with a small distance z along the
search direction d in Step 1. The generated point will
lie outside the stable equilibrium manifold (or equivalently,

the constraint surface or feasible region of problem (5)).
In Step 2, a new feasible point x, on the stable

equilibrium manifold of QGS is created from y, by
applying projection matrix P,(x,) . Thereafter, d is
updated as a unit vector with the direction pointing
towards x,, with initial point x! in Step 3. Such update

ensures that x,

. Mmoves away from x| and the

generated sequence {x,} gradually approaches the

stability boundary. This procedure terminates once
function f(x) starts to decrease. The point at which

f(x) decreases is the exit point. The term “exit point” is

used to indicate that this point is a good approximation to
the point where the procedure exits the stability boundary.

4. A Composite Load Model Structure

In this section, the ZIP-IM composite load model is
described before numerical studies for parameter
estimation using actual measurements.

4.1 ZIP-IM Model

Aggregate power system loads are often represented by
a composite load model to capture the static and dynamic
behaviors of various load components. The ZIP-IM model
consists of a static ZIP model and third-order induction
motor model [13] as follows:

0'd£=_£E'+X_IX -V -cosd

dt X' X
ﬁzw_ws_ﬂ'V;’suﬁ ©)
dt X TE
M@=_V-E.smé'_Tm

dt X’

7\? 72 [ '

P:PZIPO(PZ(V) +P,(V)+PP)—VE siné/ X W)

0 =0, (Qz (V)2 +Q,(17)+QQ)+V(V—E'-0055)/X'

where ¥ =V/V, .

behind transient reactance. ®,, @: angular velocity of

E', §: voltage magnitude, angle

stator and rotor [rad/s]. X,, X,,X,: magnetizing, stator
and rotor reactances. X'=X +X X /(X +X)

transient reactance. X =X, +X,. T=(X, +X,)/oR :
transient open-circuit time constant. R, : rotor resistances.
M : motor inertia. 7, : load torque constant. V.6 :
terminal voltage of ZIP-IM model. F,,,, O,, : initial real

and reactive powers consumed by ZIP model. Equations
(9) and (10) represent the state equations and the model
output of the ZIP-IM model, respectively. It is noted that
P,+F+P =1 and Q,+0 +0,=1 at V=V,

In developing a composite load model including
induction motor load, we usually introduce a parameter
K, which denotes the percentage of induction motor

loads at a steady state. Once K, is set, then the

induction motor can be initialized and Q,,,, the initial
reactive power consumed by the induction motor, can be
computed. Hence, the initial power consumed by ZIP
model, P,,,Q0,,, is directly computed. Also P, and
Q, are eliminated using two equality constraints at the

steady state. Hence, the minimal parameter vector to be
estimated is then reduced to-nine and listed as follows:



Byoung-Kon Choi, Hsiao-Dong Chiang and David C. Yu 455

p=IMT,,X.X .K,,P,P,0,,0,7T (11

Fig. 1 shows an equivalent circuit of the ZIP-IM load
model.

Constant  Constant Constant |
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Fig. 1. An equivalent circuit of ZIP-IM model

4.2 Constraints

In order to simulate the output of the ZIP-IM model
with a given set of parameters and measurements, initial
states of the induction motor, z, =[E],5,,®,]" should be
feasible. The initial states are functions of model
parameters. For instance, initial angle of induction motor
0, is computed using the following equation:

1. [ 2XXK P
0y =——sin" | ———Z—

= (12)

As shown in (12), the initial rotor angle &, can be
defined only when the following condition is satisfied:
2XXK P
I<—2 <
(X=X

(13)

It is noted that this nonlinear inequality constraint
should be satisfied during the whole optimization process
since without the constraints (13) satisfied, model output
cannot be simulated and the optimization process cannot
proceed because of numerical ill-conditioning. This strong
requirement of parameter feasibility is a special feature of
the parameter estimation of composite load models

associated with induction motors. In this regard, Trust- -

Tech can be effectively applied to this problem since the
PGS phase guarantees the parameter feasibility.

From the physical arguments, the following linear
constraint and box constraints are also applied.

X' -X<0.0 0.1<K, <095

0.001< M <10.0 0.1<P, <09
0.001<7/<4.0 and <0.1<P,<0.9 (14)
0.001<X <40 01<0,<09
0.001<X'<4.0 0.1<0,<4.0

The inequality constraints in (13) ~ (14) are transformed into
appropriate equality forms by introducing slack variables as in
the problem definition in (5).

5. Parameter Estimation using Trust-Tech

In this section, a Trust-Tech based parameter
estimation algorithm is presented for the parameter
estimation of the ZIP-IM composite load model. The key
features of this specific parameter estimation problem
involving the ZIP-IM model under study are summarized
as follows:

* A set of differential equations need to be solved to
obtain model output.

* Nonlinear constraints for feasible initial dynamic states
should always be satisfied during the complete
parameter estimation process.

* Despite the feasible parameter set, model outputs can go
to infinity (i.e. system goes unstable), which means that
it is difficult to obtain gradient information.

In case that model output goes to infinity along a
search direction, it is assumed that an exit point doesn't
exit along the search direction and the algorithm switches
to another search direction. In the integration of the PGS,
it is possible that a predicted point x,, from the current

point x, may violate the nonlinear inequality constraints

(13). In this case, integration step size is reduced by half.
If several attempts at step size shrinking fails, correction
of infeasible point x,,, is performed, ie., the QGS is

integrated with x,_, as an initial point until a feasible

point is found. Then integration of the PGS is continued.
This special feature indicates that parameter estimation
problem of composite load models is different from the
pure static nonlinear programming problem.

In this study, the Trust-Tech methodology with the
‘exit point method’ is adopted for computational
efficiency. Since the integration of PGS from an exit point
to a local optimal solution can be time consuming,
conventional local methods such as trust-region method
and sequential quadratic programming (SQP) method are
employed near a local optimal solution.

The overall procedure of finding a global optimal
solution for composite load model parameter estimation
using Trust-Tech is summarized as follows:

Step 1. Find a feasible component by performing QGS
phase.

Step 2. From a feasible initial point, locate a local optimal
solution by integrating PGS and using a local
solver.

Step 3. Generate search directions from the obtained local
solution using a proper method.
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Step 4. Along a search direction, detect an exit point by
integrating PGS. If the detection of an exit point
fails, start Step 4 over using another search
direction. If all search directions have been
explored, terminate the algorithm.

Step 5. Compute

gy =X, + XX, +0'1XPH(xexir)'xs and

sufficiently integrate PGS using ¢, as an initial
point.

Step 6. Call a local solver to find a local optimal solution
using the end point of the PGS integration as an
initial point.

Step 7. Check if the obtained local optimal solution is a
new one. If it is, add it to the local optimal solution
set. If all search directions are explored, then
terminate the algorithm.

In Step 3, search directions can be generated using
Hessian matrix at a local optimal solution. In this study,
eigenvectors of the Hessian including several user defined
search directions are used as search directions. In Step 4,
an exit point may not be found along a certain direction
when system states go unstable which makes model
output and objective function value go infinite. In this
case, the algorithm terminates searching for an exit point
and tries another search direction.

In Step 6, a local solver can be directly called with ¢,

without integrating PGS, but infeasible point can be
encountered during the optimization process when the
employed local solver does not guarantee the feasibility
during the intermediate iterations. Two approaches can be
used in order to solve this numerical problem; one is that a
feasible direction method is employed to ensure the
parameter feasibility during the whole optimization
process. However, feasible direction methods can be
numerically expensive. The other approach is to integrate
the PGS until sufficiently approaching a local optimal
solution. Near a local optimal solution, a local solver has
less possibility of suffering from parameter infeasibility
during the optimization process.

Note that the employed local solvers do not guarantee
parameter feasibility during the optimization process;
hence the algorithm may fail to find a local optimal
solution since the algorithm is terminated when an
infeasible point is encountered during the iterations. This
case is actually observed in the numerical studies.

6. Numerical Studies

Multiple sets of parameter values of the ZIP-IM
composite load model are found using the Trust-Tech
based algorithm. Actual measurements taken from a
power system are used in this study. Two sets of

measurement data (SP1 and SL2 in {5]) are used in
deriving and validating parameter values, respectively.

A feasible point can be obtained by performing Phase I
(QGS Phase) or can be determined based on domain
knowledge. Solution No. 1 in Table 1 is obtained by
integrating the PGS from a feasible point and by a local
solver. Then, nine search directions are generated using a
Hessian matrix at solution No. 1. In addition, three user-
defined search directions are also added to the set of
search directions. A total of nine local optimal solutions
are obtained using the Trust-Tech based approach and are
listed in Table 1. Table 1 indicates that solutions No. 1, 4-
7, and 9 show similar modeling performances (¢, and

&,, the relative mismatch error (%) in real and reactive

loads) while solutions No. 2, 3, and 8 show different
(worse) modeling performance from the others. Among
the solutions showing similar modeling performance,
several parameter values such as , and O, are quite

different from one another.

Figure 2 shows the variation of objective function
values along search directions 2 and 10 in Table 2. Fig. 2
demonstrates the procedure of a local optimal solution
along the search directions; first an exit point is found by
detecting the first local maximum of objective function
value. Second, from the exit point, the PGS is integrated
for a while to approach a local optimal solution associated
with the exit point. Finally a local solver is called to
obtain the exact local optimal solutions.

Table 2 presents the relationship between search
directions and solutions listed in Table 1. In Table 2, ‘*’
in search directions 2 and 4 indicates that a local solver
encounters infeasible points during the optimization
process. In this case, a very large objective function value
is intentionally set in this study.

It is not always possible to find a local optimal solution
along each search direction. As noted in the previous
section, two numerical problems can occur during the
PGS phase; first, objective function value can go to
infinity resulting in the failure of the exit point finding.
Figure 4 shows the case where objective function value
goes to infinity along search direction 5. Second,
conventional gradient-based local solvers fail to converge
when an infeasible point for the constraints (11) is
encountered since initial states cannot be defined, thereby
objective function value cannot be evaluated. In this
numerical study, both of the numerical problems are
observed.

Derived parameter values should be validated using
unseen measurement data. The nine sets of parameter
values in Table 1 are validated using a different
measurement data SL2 in [5], which is of summer light
loading condition. Table 3 shows validation errors of the
nine sets of parameter values. Solutions No. 1 and No. 4
through No. 9 show similar validation errors in real load
modeling while solutions No. 2 and No. 3 give slightly
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more validation errors than the others. In reactive load with the parameter values of solution No. 9 in case of SL2
modeling, solutions No. 9, No. 7, and No. 5 give better measurement data. Figure 3 indicates that the derived Z]P-
validation errors. From Tables 1 and 3, solution No. 9 IM model can quite accurately model the dynamic
appears to be a good choice for a representative set of behaviors of real and reactive loads during disturbances.

parameter values for the ZIP-IM model. Figure 3 shows
the simulated real and reactive loads by the ZIP-IM model

Table 1. Multiple sets of parameter values for ZIP-IM model obtained by the Trust-Tech based approach (SP1 measurement data in [5])

Sol. No. 1 Ne. 2 No. 3 No. 4 Neo. 5 No. 6 No. 7 No. 8 Ne. 9
M 0.0015 0.0024 4.7646 0.0016 0.0015 0.0010 0.0015 0.0015 0.6018
To ! 0.1963 1.0852 1.2844 0.0402 0.2524 0.1294 0.2702 0.2331 0.4246
X 1.2901 1.9606 3.9603 0.1434 1.6960 1.3634 1.8553 2.9249 2.5739
X! 0.1228 0.3837 0.1022 0.0700 0.1256 0.1243 0.1261 0.0990 0.1261
Kpm 0.5024 02102 0.1000 0.4998 0.5024 0.5449 0.5049 0.6469 0.4907
Pz 0.5365. 0.6153 0.1000 0.5312 0.5352 0.7485 0.6471 0.6161 0.5273
PP 0.1008 0.6177 0.3840 0.1000 0.1000 0.2297 0.1915 0.1040 0.1273
QZ 0.1000 0.1600 0.9000 0.5913 0.1000 0.1204 0.1000 0.1000 0.1000
QQ 2.3497 1.2660 1.2975 0.1000 3.0032 2.9980 3.2525 3.3122 38614
&p (Yo} 1.2421 1.7943 2.2862 1.2457 1.2421 1.2002 1.2402 1.4190 1.2596
& (%) 6.7509 22.7817 5.0289 6.6160 6.7580 7.6647 6.8145 11.4788 6.5054

Table 2. Search directions and corresponding solution numbers

Search Directions

1 2 3 4 S 6 7 8 9 10 11 12

Sol. No. 2 3* infr* 4% inf 5 6 inf inf 7 8

* A local solver encounters infeasible points during the optimization process. In this case, a very large objective function value is intentionally set.
** Note that the ‘inf> denotes that objective function value goes to infinity along the search direction resulting in a termination of the algorithm.
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Fig. 2. Variation of objective function values along the search directions 2 and 10 in Table 2

Table 3. Validation errors of the local minima in Table 1 using a different measurement data (SL2 measurement data in [5])

Sol. No. 1 Ne. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

&, (%) 0.5835 0.8171 0.9473 0.5799 0.5838 0.5565 0.5734 0.5451 0.5836

&, (%) 7.7342 114762 12.2767 15.2905 6.2652 8.8609 5.7851 6.6987 4.8954
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Fig. 3. Modeled real and reactive loads using solution No. 9 in Table 1 and different measurement data (SL2 data in [5]). The
modeling errors in real and reactive loads are 0.5836% and 4.8954%, respectively (see Table 3).
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7. Concluding remarks

In this paper, Trust-Tech, a novel methodology for a
global optimization is introduced and applied to a
parameter estimation task for the ZIP-induction motor
(ZIP-IM) composite model. The parameter estimation task
is formulated as a nonlinear constrained optimization
problem. The main results and key observations of this
paper are summarized as follows:

* Trust-Tech is successfully applied to a composite load
model parameter estimation.

* Multiple sets of parameter values of the ZIP-IM are
obtained in a deterministic manner.

*Due to strong feasibility requirement during the
parameter estimation, robust feasible local solvers need
to be employed.

* An efficient correction method using the QGS is
proposed when an infeasible point is encountered.

* Local solvers can converge to the starting point due to
the non-convexity of the objective function.
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