• Title/Summary/Keyword: Modeling Techniques

Search Result 1,692, Processing Time 0.025 seconds

FLUID MODEL SOLUTION OF FEEDFORWARD NETWORK OF OVERLOADED MULTICLASS PROCESSOR SHARING QUEUES

  • AMAL EZZIDANI;ABDELGHANI BEN TAHAR;MOHAMED HANINI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.291-303
    • /
    • 2024
  • In this paper, we consider a feedforward network of overloaded multiclass processor sharing queues and we give a fluid model solution under the condition that the system is initially empty. The main theorem of the paper provides sufficient conditions for a fluid model solution to be linear with time. The results are illustrated through examples.

The Calculation of Physical Properties of Amino Acids Using Molecular Modeling Techniques (II)

  • Lee, Myung-Jae;Kim, Ui-Rak
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1046-1050
    • /
    • 2004
  • Six physical properties (enthalpy, density, decomposition temperature, solubility in water, pKa values, and hydronium potential) were examined by molecular modeling techniques. The molecular connectivity index, Wiener distance index, and Ad hoc descriptor are employed as structural parameters to encode information about branching, size, cyclization, unsaturation, heteroatom content, and polarizability. This paper examines the correlation of the molecular modeling techniques parameters and the physicochemical properties of amino acids. As a results, calculated values were in agreement with experimental data in the above six physical properties of amino acids and the molecular connectivity index was superior to the other indices in fitting the calculated data.

VOICE SOURCE ESTIMATION USING SEQUENTIAL SVD AND EXTRACTION OF COMPOSITE SOURCE PARAMETERS USING EM ALGORITHM

  • Hong, Sung-Hoon;Choi, Hong-Sub;Ann, Sou-Guil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.893-898
    • /
    • 1994
  • In this paper, the influence of voice source estimation and modeling on speech synthesis and coding is examined and then their new estimation and modeling techniques are proposed and verified by computer simulation. It is known that the existing speech synthesizer produced the speech which is dull and inanimated. These problems are arised from the fact that existing estimation and modeling techniques can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can not give more accurate voice parameters. Therefore, in this paper we propose a new voice source estimation algorithm and modeling techniques which can represent a variety of source characteristics. First, we divide speech samples in one pitch region into four parts having different characteristics. Second, the vocal-tract parameters and voice source waveforms are estimated in each regions differently using sequential SVD. Third, we propose composite source model as a new voice source model which is represented by weighted sum of pre-defined basis functions. And finally, the weights and time-shift parameters of the proposed composite source model are estimeted uning EM(estimate maximize) algorithm. Experimental results indicate that the proposed estimation and modeling methods can estimate more accurate voice source waveforms and represent various source characteristics.

  • PDF

Trends in Materials Modeling and Computation for Metal Additive Manufacturing

  • Seoyeon Jeon;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.213-219
    • /
    • 2024
  • Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.

A Study on FE Modeling Techniques of Steel Plate Girder Bridge with Composite Section for the Dynamic Analysis (동특성 분석을 위한 합성단면을 갖는 교량구조물의 FE 모델링 기법)

  • Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.139-148
    • /
    • 2006
  • The dynamic characteristics of a bridge deduced by using the modeling techniques depend on its stiffness and mass calculated from its geometric model. This research develops the FE modeling techniques for a steel plate girder bridge with composite section. and proves their validity by comparing the results with those from actual measurement. The FE modeling techniques are divided into two categories--a simplified one and two-dimensional model and a detailed three-dimensional model. In the meantime, the dynamic responses of the bridge tested for this research were measured by the ambient vibration some of accelerometers were been attached to its upper slab girder under normal traffic load. The Cross Power Spectrum obtained from the measurement was used to analyze the dynamic characteristics by natural excitation techniques. The analytic results are compared to those of each FE modeling, and thereby the modeling techniques were proved to be valid.

System Level ESD Analysis - A Comprehensive Review II on ESD Coupling Analysis Techniques

  • Yousaf, Jawad;Lee, Hosang;Nah, Wansoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2033-2044
    • /
    • 2018
  • This study presents states-of-the art overview of the system level electrostatic discharge (ESD) analysis and testing. After brief description of ESD compliance standards and ESD coupling mechanisms, the study provides an in-depth review and comparison of the various techniques for the system level ESD coupling analysis using time and frequency domain techniques, full wave electromagnetic modeling and hybrid modeling. The methods used for improving system level ESD testing using troubleshooting and determining the root causes of soft failures, the optimization of ESD testing and the countermeasures to mitigate ESD problems are also discussed.

New Discrete-Time Modeling and Simulation Techniques for PWM converters (PWM 컨버터에 대한 새로운 이산시간 모델링 및 시뮬레이션 기법)

  • 김만호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.289-296
    • /
    • 2002
  • New discrete-time modeling and simulation techniques are proposed which take advantages of the special features of PWM converter power stages and their compensation circuits. These techniques provide reduction of system order, and allow for the faster simulation without any numerical convergence problem. A buck converter with two-stage output filter Is employed to confirm the usefulness of the proposed techniques. The simulation results show these techniques can simulate the responoes of PWM converter system up to high frequencies.

Rapid Local Modeling in Construction Automation

  • Kwon Soon-Wook
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.173-179
    • /
    • 2003
  • Techniques to rapidly model local spaces, using 3D range data can enable implementation of: (1) real-time obstacle avoidance for improved safety, (2) advanced automated equipment control modes, and (3) as-built data acquisition for improved quantity tracking, engineering, and project control systems. The objective of the research reported here was to introduce current rapid local modeling techniques and develop rapid local spatial modeling tools.

  • PDF

Enhanced reasoning with multilevel flow modeling based on time-to-detect and time-to-effect concepts

  • Kim, Seung Geun;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.553-561
    • /
    • 2018
  • To easily understand and systematically express the behaviors of the industrial systems, various system modeling techniques have been developed. Particularly, the importance of system modeling has been greatly emphasized in recent years since modern industrial systems have become larger and more complex. Multilevel flow modeling (MFM) is one of the qualitative modeling techniques, applied for the representation and reasoning of target system characteristics and phenomena. MFM can be applied to industrial systems without additional domain-specific assumptions or detailed knowledge, and qualitative reasoning regarding event causes and consequences can be conducted with high speed and fidelity. However, current MFM techniques have a limitation, i.e., the dynamic features of a target system are not considered because time-related concepts are not involved. The applicability of MFM has been restricted since time-related information is essential for the modeling of dynamic systems. Specifically, the results from the reasoning processes include relatively less information because they did not utilize time-related data. In this article, the concepts of time-to-detect and time-to-effect were adopted from the system failure model to incorporate time-related issues into MFM, and a methodology for enhancing MFM-based reasoning with time-series data was suggested.

COMBINING KNOWLEDGE-PROCESSING AND SIMULATION TECHNIQUES FOR SYSTEMS MODELING

  • Lehmann, Axel;Koster, Andreas
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.3-8
    • /
    • 2001
  • Regarding current rapid innovations and applications of information and telecommunication technologies as well as economical requirements, modeling and simulation (M&S) plays an increasingly important role for the planning, development and operation of high-tech products and systems. M&S has to seen as a key technology for multi-facetted analysis of complex systems during their life-cycles. For reasons as accuracy, credibility and cost-effectiveness, the selection of adequate and effective M&S techniques and tools is of significant importance. Regarding these aspects, this paper summarizes the basic methodological modeling approach for effective product and system modeling. In addition, besides a classification of different basic architectures and taxonomies combining knowledge-processing and simulation techniques, the paper describes some practical implementations and experiences.

  • PDF