DOI QR코드

DOI QR Code

FLUID MODEL SOLUTION OF FEEDFORWARD NETWORK OF OVERLOADED MULTICLASS PROCESSOR SHARING QUEUES

  • AMAL EZZIDANI (Hassan First University of Settat, Faculty of Sciences and Techniques, Computer, Networks, Mobility and Modeling laboratory) ;
  • ABDELGHANI BEN TAHAR (Hassan First University of Settat, Faculty of Sciences and Techniques, Computer, Networks, Mobility and Modeling laboratory) ;
  • MOHAMED HANINI (Hassan First University of Settat, Faculty of Sciences and Techniques, Computer, Networks, Mobility and Modeling laboratory)
  • Received : 2022.12.18
  • Accepted : 2024.01.20
  • Published : 2024.03.30

Abstract

In this paper, we consider a feedforward network of overloaded multiclass processor sharing queues and we give a fluid model solution under the condition that the system is initially empty. The main theorem of the paper provides sufficient conditions for a fluid model solution to be linear with time. The results are illustrated through examples.

Keywords

References

  1. A. Ben Tahar and A. Jean-Marie, The fluid limit of the multiclass processor sharing queue, Queueing Systems Theory Appl. 71 (2012), 347-404. https://doi.org/10.1007/s11134-012-9287-9
  2. H. Chen, O. Kella and G. Weiss, Fluid approximations for a processor sharing queue, Queueing Systems Theory Appl. 27 (1997), 99-125. https://doi.org/10.1023/A:1019105929766
  3. M. Frolkova, B. Zwart, Fluid limit of a PS-queue with multistage service, Probability in the Engineering and Informational Sciences 33 (2019), 1-27. https://doi.org/10.1017/S0269964817000456
  4. H.C. Gromoll, Diffusion Approximation for a Processor Sharing Queue in Heavy Traffic, Ann. Appl. Prob. 14 (2004), 555-611. https://doi.org/10.1214/105051604000000035
  5. H.C. Gromoll and L. Kruk, Heavy traffic limit for a processor sharing queue with soft deadlines, Ann. Appl. Prob. 17 (2007), 1049-1101. https://doi.org/10.1214/105051607000000014
  6. H.C. Gromoll, A.L. Puha and R.J. Williams, The fluid limit of a heavily loaded processor sharing queue, Ann. Appl. Probab. 12 (2002), 797-859. https://doi.org/10.1214/aoap/1031863171
  7. A. Jean-Marie and P. Robert, On the transient behavior of the processor sharing queue, Queueing Systems Theory Appl. 17 (1994), 129-136. https://doi.org/10.1007/BF01158692
  8. Y. Lu, A fluid limit for processor-sharing queues weighted by functions of remaining amount of services, Probability in the Engineering and Informational Sciences (2019), 1-8.
  9. A.J. Mulvany, A.L. Puha and R.J. Williams, Asymptotic behavior of a critical fluid model for a multiclass processor sharing queue via relative entropy, Queueing Systems Theory Appl. 93 (2019), 351-397. https://doi.org/10.1007/s11134-019-09629-8
  10. M. Nabe, M. Murata, H. Miyahara, Analysis and Modelling of World Wide Web Traffic for Capacity Dimensioning of Internet Access Lines, Performance Evaluation 34 (1998), 249-271. https://doi.org/10.1016/S0166-5316(98)00040-6
  11. A.L. Puha, A.L. Stolyar and R.J. Williams, The fluid limit of an overloaded processor sharing queue, Math. Oper. Res. 31(2) (2006) 316-350. https://doi.org/10.1287/moor.1050.0181
  12. A.L. Puha and R.J. Williams, Asymptotic behavior of a critical fluid model for a processor sharing queue via relative entropy, Stochastic Systems 6 (2016), 251-300. https://doi.org/10.1287/15-SSY198
  13. A.L. Puha and Amy R. Ward, Fluid limits for multiclass many-server queues with general reneging distributions and head-of-the-line scheduling, Mathematics of Operations Research 47 (2022), 1192-1228. https://doi.org/10.1287/moor.2021.1166
  14. J. Ruuskanen, T. Berner, K. Arzen and A. Cervin, Improving the mean-field fluid model of processor sharing queueing networks for dynamic performance models in cloud computing, Performance Evaluation 151 (2021), 69-70.
  15. I.I. Trub, Answers to Queries to Internet: An Optimal Generation Strategy, Autom. Remote Control 64 (2003), 935-942. https://doi.org/10.1023/A:1024137632191
  16. I.M. Verloop, U. Ayesta and R. Nunez-Queija, Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing, Operations Research 59 (2011), 648-660. https://doi.org/10.1287/opre.1110.0914
  17. V.M. Vishnevsky, Teoreticheskie osnovy proektirovaniya kompyuternykh setei, The Theoretical Fundamentals for Design of Computer Networks, Tekhnosphera, Moscow, 2003.
  18. R. Williams, Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse, Queueing Systems Theory Appl. 30 (1998), 27-88. https://doi.org/10.1023/A:1019108819713
  19. J. Zhang, J. Dai and B. Zwart, Law of large number limits of limited processor-sharing queues, Math. Oper. Res. 34 (2009), 937-970. https://doi.org/10.1287/moor.1090.0412
  20. N. Zychlinski, Applications of fluid models in service operations management, Queueing Syst. Theory Appl. 103 (2023), 161-185.