• 제목/요약/키워드: Modeling Module

검색결과 608건 처리시간 0.03초

A New Approach to Reduced-Order Modeling of Multi-Module Converters

  • Park, Byung-Cho
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권4호
    • /
    • pp.92-98
    • /
    • 1997
  • This paper presents a new approach to obtaining a reduced-order model for multi-module converters. The proposed approach can be used to derive the reduced-order model for a wide class of multi-module converters including pulse-width-modulated (PWM) converters, soft-switched PWM converters, and resonant converters. The reduced-order model has the structure of a conventional single-module converter while preserving the dynamics of the original multi-module converter. Derivation procedures and the use of the reduced-order model is demonstrated using a three-module boost converter.

  • PDF

A modeling and performance comparison of photovoltaic module (태양광모듈의 모델링 및 성능해석 결과비교)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-Mi;Yu, Gwon-Jong;Choi, Ju-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1128-1129
    • /
    • 2008
  • The detailed modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV array performance for changing meteorological conditions, verify actual rated power of PV system sizing and, determine the optimal design of PV system and components. This paper investigates a modeling approach of PV module performance in terms of irradiance and temperature changes and compared measured with simulated value of PV modules.

  • PDF

Development of Photovoltaic Modeling and Generation System using PLECS in MATLAB (MATLAB 기반의 PLECS를 이용한 태양광 모델링 및 발전시스템 개발)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Young-Kuk;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권12호
    • /
    • pp.2379-2384
    • /
    • 2009
  • In this paper, based on MATLAB which has characteristic that is simply applied to control algorithm and source modeling, photovoltaic modeling is implemented. Photovoltaic modeling is similarly performed PV array and simulated. Also, in order to output maximum power of PV, MPPT control is simulated. Moreover, simulation of converter is performed by means of PLECS (Piece wise Linear Electrical Simulation) which is easily made schematic of power electronics. Also, we compare simulation results and Sharp PV module and Suntech PV module. Finally, informative simulation of PV generation system is provided.

Improved Photovoltaic MATLAB Modeling Accuracy by Adding Wind Speed Effect

  • An, Dong-Soon;Poudel, Prasis;Bae, Sang-Hyun;Park, Kyung-Woo;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • 제10권1호
    • /
    • pp.58-63
    • /
    • 2017
  • Photovoltaic (PV) are generally modeled using mathematical equations that describe the PV system behavior. Most of the modeling approach is very simple in terms of that PV module temperature is calculated from nominal constant cell temperature such as ambient temperature and incoming solar irradiance. In this paper, we newly present MATLAB model particularly embedding the effect of wind speed to describe more accurate cell temperature. For analyses and validate purpose of the proposed model, solar power is obtained and compared with and without wind speed from the 50Wp PV module provided by vendor datasheet. In the simulation result, we found that power output of the module is increased to 0.37% in terms of cell temperature a degreed down when we consider the wind speed in the model. This result is well corresponded with the well-known fact that normal PV is 0.4% power changed by cell temperature a degree difference. Therefore it shows that our modeling method with wind speed is more appropriate than the methods without the wind speed effect.

3차원 그래픽을 이용한 AMS modeler의 개발에 관한 연구

  • 박상철;최병규
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.381-385
    • /
    • 1996
  • 본 연구에서는 자동화 제조 시스템 (Automatic Manufacturing System :AMS)의 설계및 구현에 있어서 물리적인 검증 (Physical Validation)을 위한 소프트웨어 시스템의 구조를 제안하고 구현하였다. 제안된 소프트웨어 시스템은 설비들과 물류 흐름에 있어서 간섭 검증과 운영 가능성을 검증하는 기능을 제공하며 크게 4개의 모듈로 나누어져 있다. : 1) 기본 형상들을 이용하여 원하는 형상을 정의하는 "Shape Modeling Module", 2) 실제 설비의 Kinematics와 기능을 모델링하는 "Facility Modeling Module", 3) AMS의 물리적인 배치를 구성하는 "Layout Design Module", 4) 모델링된 AMS를 실행시켜 볼 수 있는 "Factory Emulation Module". 이와 같은 소프트웨어 시스템을 구현하기 위해 수행된 주된 연구는 다음과 같다. : 1) AMS를 구성하는 설비들을 모델링하는 방법을 제시, 2) 표준 설비들의 Instancing Parameter 제시, 3) C++과 GL을 이용하여 소프트웨어로의 구현, 4) Flexible Manufacturing System (FMS)에의 응용.lexible Manufacturing System (FMS)에의 응용.

  • PDF

Structural Analysis of Boiler Module for Sea-Transportation (해상 운송을 위한 보일러 모듈의 구조 해석)

  • Jeon, Y.C.;Kim, T.W.;Jeong, D.G.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.788-793
    • /
    • 2001
  • Finite element analysis was carried out to investigate the integrity and reliability of boiler module during sea transportation. The boiler module was supported by steel structure to relieve the instantaneous shock from oceanic wave and its primary parts were strengthened with several reinforcements. Finned tube walls which were used in the furnace wall were assumed as orthotropic plates having equivalent material properties. The bank tubes were also equivalently modeled in accordance with ASME B31.1 for the convenience of finite element modeling. The calculation results were compared with the yield stress of the material. In particular, the bank tube stress, which was evaluated by converting the calculated stresses in equivalent tubes into those in original tubes by using the ratio of diameter, was also examined with yield stress.

  • PDF

Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions (랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링)

  • Baek, Jihye;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • 제21권4호
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

A dust continuum radiative transfer module

  • Lee, Seokho;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제41권2호
    • /
    • pp.55.1-55.1
    • /
    • 2016
  • We have developed a module for the dust continuum radiative transfer calculation as part of "Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC)". PUREC will be applied to interprete observations of protoplanetary disks. When a disk is under the hydrostatic equilibrium condition, the dust temperature and the vertical density structure should be calculated simultaneously. This module calculates the dust temperature by using the method of mean intensity (Lucy et al. 1999). In the very optically thick mid-palne, the Monte-carlo method is not efficient, thus, we apply "modified random walk" and "Partial Diffusion Approximation" to the module. The module has been verified by bechmark tests.

  • PDF

Generation of Information Model for Modular Steel Bridge Superstructure Considering Module Assembly Condition (모듈 조합조건을 고려한 모듈러 강교량 상부구조의 정보모델 생성)

  • Seo, Kyung-Wan;Park, Junwon;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제28권4호
    • /
    • pp.393-400
    • /
    • 2015
  • This study proposes a method to create and combine a superstructure module by parametric modeling, in order to improve the production efficiency of information model for modular steel bridge superstructure that can be used in planning, design and construction phase. Compound classification was performed in order to derive elements to apply the parametric modeling, and according to assembly condition, the classified elements were grouped into 13 types. In addition, three assembly conditions were derived for production of stable superstructure through combination of superstructure module, which is a production unit for modular steel bridge factory. Parameter that reflects assembly condition in compound shape when producing superstructure module through parametric modeling was deducted. Superstructure module compounds were produced according to type and parameter using interface generation based on Building Information Model(BIM) software that was developed in this study. The superstructure module produced reflects information to combine into a superstructure. To verify this, information model based on Industry Foundation Classes(IFC) was built and confirmed the application in production of superstructure by identifying the reflected property information.

Object-Oriented Mission Modeling for Multiple Transport Aircraft

  • Zang, Jing;Liu, Hu;Liu, Tianping;Ni, Xianping
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.264-271
    • /
    • 2013
  • A method of multiple transport-aircraft mission modeling is proposed in order to improve the efficiency of evaluating and optimizing pre-mission plans. To deal with the challenge of multiple transport-aircraft missions, the object-oriented modeling method is utilized. The elements of the mission are decomposed into objects and businesses, And the major mission objects and their important properties are summarized. A complex mission can be broken down into basic business modules such as the ground section and flight section. The business models of loading and fueling services in the ground section are described. The business model of the flight section is composed of an air route and flight profile with the flight equation and the fuel consumption model. The logical relationship of objects and business modules is introduced. The architecture of the simulation system, which includes a database, computation module, graphical user interface (GUI) module, and a result analysis module, is established. A sample case that includes two different plans is provided to verify the model's ability to achieve multi-aircraft composite mission simulation.