• Title/Summary/Keyword: Model-based verification

Search Result 1,500, Processing Time 0.028 seconds

Formal Verification Network-based Protocol for Railway Signaling Systems

  • Hwang, Jong-Gyu;Lee, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.354-357
    • /
    • 2004
  • According to the computerization of railway signaling systems, the interface link between the signaling systems has been replaced by the digital communication channel. At the same time, the importance of the communication link is more pronounced than in the past. In this paper, new network-based protocol for Korean railway signaling has designed between CTC and SCADA system, and the overview of designed protocol is briefly represented. Using the informal method for specifying the communication protocol, a little ambiguity may be contained in the protocol. To clear the ambiguity contained in the designed protocol, we use LTS model to design the protocol for this interface link between CTC and SCADA, the LTS is an intermediate model for encoding the operational behavior of processes. And then, we verify automatically and formally the safety and the liveness properties through the model checking method. Especially, the modal ${\mu}$-calculus, which is a highly expressive method of temporal logic that has been applied to the model checking method. It will be expected to increase the safety, reliability and efficiency of maintenance of the signaling systems by using the designed protocol for railway signaling in Korea.

  • PDF

Deep Face Verification Based Convolutional Neural Network

  • Fredj, Hana Ben;Bouguezzi, Safa;Souani, Chokri
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.256-266
    • /
    • 2021
  • The Convolutional Neural Network (CNN) has recently made potential improvements in face verification applications. In fact, different models based on the CNN have attained commendable progress in the classification rate using a massive amount of data in an uncontrolled environment. However, the enormous computation costs and the considerable use of storage causes a noticeable problem during training. To address these challenges, we focus on relevant data trained within the CNN model by integrating a lifting method for a better tradeoff between the data size and the computational efficiency. Our approach is characterized by the advantage that it does not need any additional space to store the features. Indeed, it makes the model much faster during the training and classification steps. The experimental results on Labeled Faces in the Wild and YouTube Faces datasets confirm that the proposed CNN framework improves performance in terms of precision. Obviously, our model deliberately designs to achieve significant speedup and reduce computational complexity in deep CNNs without any accuracy loss. Compared to the existing architectures, the proposed model achieves competitive results in face recognition tasks

Design of an Authentication System Based on Personal Identity Verification Card (전자신분증 기반의 개인 신분확인을 위한 인증시스템 설계)

  • Park, Young-Ho;Kong, Byung-Un;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1029-1040
    • /
    • 2011
  • Electronic identity (e-ID) card based on smartcard is a representative identity credential for on-line and off-line personal identification. The e-ID card can store the personal identity information securely, so that the information can be accessed fast, automated identity verification and used to determine the cardholder's authorization to access protected resources. Due to such features of an e-ID card, the number of government organizations and corporate enterprises that consider using e-ID card for identity management is increasing. In this paper, we present an authentication framework for access control system using e-ID cards by discussing the threat environment and security requirement against e-ID card. Specifically, to accomplish our purpose, we consider the Personal Identity Verification system as our target model.

A Certificate Verification Method based on the Attribute Certificates (AC기반의 인증서 검증 모델)

  • Park ChongHwa;Kim JiHong;Lee ChulSoo;Kim Dongkyoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.6
    • /
    • pp.15-24
    • /
    • 2004
  • Electronic commerce is widely used with the development of information communication technologies in internet using public key certificates. And the study for access control in Web application and DB system is also progressed actively. There are many verification method for PKC(Public Key Certificates), which are CRL, OCSP, SCVP and others. But their certificates verification methods for PKC cannot to be applied to PMI(Privilege Management Infrastructure) which is using AC(Attribute certificates) because of synchronization of PKC and AC. It is because AC has no public key, AC Verifier must get the PKC and verify the validity on PKC and AC. So in this paper we proposed the new AC-based certificate verification model. which provide the synchronization in two certificates(AC and PKC).

Applications of Disturbed State Concept for the dynamic behaviors of fully saturated soils (포화사질토의 동적거동규명을 위한 교란상태개념의 이용)

  • 최재순;박근보;서경범;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-147
    • /
    • 2003
  • There are many problems in the prediction of soil dynamic behaviors because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical methods based on the dynamic constitutive model have been proposed but the model hardly predict the excess pore water pressure directly. In this study, the verification on the disturbed state concept (DSC) model, proposed by Dr, Desai was performed. Some laboratory tests such as conventional triaxial tests and cyclic triaxial tests were carried out to determine DSC Parameters and then disturbance values are determined by the proposed equation. Through this verification, it is proved that the disturbed state concept can express reliably the soil dynamic characteristics such as excess pore water pressure and strain softening behavior. It is also found that the critical disturbance which is determined at the minimum curvature of disturbance function can be a the specific index.

  • PDF

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

A Formal Verification Technique for PLC Programs Implemented with Function Block Diagrams (함수 블록 다이어그램으로 구현된 PLC 프로그램에 대한 정형 검증 기법)

  • Jee, Eun-Kyoung;Jeon, Seung-Jae;Cha, Sung-Deok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.211-215
    • /
    • 2009
  • As Programmable Logic Controllers (PLCs) are increasingly used to implement safety critical systems such as nuclear instrumentation & control system, formal verification for PLC based programs is becoming essential. This paper proposes a formal verification technique for PLC program implemented with function block diagram (FBD). In order to verify an FBD program, we translate an FBD program into a Verilog model and perform model checking using SMV model checker We developed a tool, FBD Verifier, which translates FBD programs into Verilog models automatically and supports efficient and intuitive visual analysis of a counterexample. With the proposed approach and the tool, we verified large FBD programs implementing reactor protection system of Korea Nuclear Instrumentation and Control System R&D Center (KNICS) successfully.

NuDE 2.0: A Formal Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

  • Kim, Eui-Sub;Lee, Dong-Ah;Jung, Sejin;Yoo, Junbeom;Choi, Jong-Gyun;Lee, Jang-Soo
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.9-23
    • /
    • 2017
  • NuDE 2.0 (Nuclear Development Environment 2.0) is a formal-method-based software development, verification and safety analysis environment for safety-critical digital I&Cs implemented with programmable logic controller (PLC) and field-programmable gate array (FPGA). It simultaneously develops PLC/FPGA software implementations from one requirement/design specification and also helps most of the development, verification, and safety analysis to be performed mechanically and in sequence. The NuDE 2.0 now consists of 25 CASE tools and also includes an in-depth solution for indirect commercial off-the-shelf (COTS) software dedication of new FPGA-based digital I&Cs. We expect that the NuDE 2.0 will be widely used as a means of diversifying software design/implementation and model-based software development methodology.

Implementation and Static Verification Methodology of Discrete Event Simulation Software based on the DEVS Diagram: A Practical Approach (DEVS 다이어그램 기반 이산사건 시뮬레이션 소프트웨어 구현 및 정적 검증기법: 실용적 접근방법)

  • Song, Hae Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • Discrete Event System Specification (DEVS) has been used for decades as it provides sound semantics for hierarchical modular specification of discrete event systems. Instead of the mathematical specification, the DEVS diagram, based on the structured DEVS formalism, has provided more intuitive and convenient representation of complex DEVS models. This paper proposes a clean room process for implementation and verification of a DEVS diagram model specification into a simulation software source code. Specifically, it underlies a sequence of transformation steps from conformance and integrity checking of a given diagram model, translation into a corresponding tabular model, and finally conversion to a simulation source code, with each step being inversely verifiable for traceability. A simple example helps developers to understand the proposed process with associated transformation methods; a case study shows that the proposed process is effective for and adaptable to practical simulation software development.

Channel Modeling and RF Performance Verification in mmWave Bands Based on NS-3 (NS-3 기반의 mmWave 대역 채널 모델링 및 RF 성능 검증)

  • Seung-Min Lee;Jun-Seok Seo;Hong-Je Jang;Myung-Ryul Choi
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.650-656
    • /
    • 2023
  • This paper implements a channel model for mmWave bands using an NS-3-based 5G system-level simulator and analyzes the reliability and validity of the implemented model through RF performance verification. The channel model for RF performance verification in the mmWave bands consider parameters such as characteristics defined in 3GPP TR 38.901, beam-forming, antenna configuration, scenarios, among others. Furthermore, the simulation results verify compliance within the ranges permitted by the 3GPP standards and verify reliability in indoor environmental scenarios by exploiting the Radio Environment Map (REM). Therefore, the channel model implemented in this study is applicable to the actual design and establishment of 5G networks, presenting a method to evaluate and validate RF performance by adjusting various parameters.