• Title/Summary/Keyword: Model-based fuzzy controller

Search Result 377, Processing Time 0.029 seconds

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

VLSI Implemtntations of Fuzzy Logic

  • Grantner, Janos;Patyra, Marek J.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.781-784
    • /
    • 1993
  • Most linguistic models of processes or plants known are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show two models for synchronous finite state machines (FSM) based on fuzzy logic, namely the Crisp-State-Fuzzy-Output (CSFO FSM) and Fuzzy-State-Fuzzy Output (FSFO FSM). As a result of the introduction of the FSM models, the improved architectures for fuzzy logic controller have been defined. These architectures featuring pipelined intelligent fuzzy controller are discussed in terms of dimensionality of the model. VLSI integrated circuit implementation issues of the fuzzy logic controller are also considered. The presented approach can be utilized for fuzzy controller hardware accelerators intended to work in the real-time environment.

  • PDF

Intelligent Digital Control of a Single Link Flexible-Joint Robot with Uncertainties (불확실성을 갖는 단일 링크 유연로봇의 지능형 디지털 제어)

  • Jang Kwon Kyu;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.318-323
    • /
    • 2005
  • In this paper, we propose a systematic method of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear system. A parallel distributed compensation (PDC) technique is then used to design a fuzzy model based controller for both stabilization and tracking. Finally, the designed continuous-time controller is converted to an equivalent discrete-time controller by using an intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy model based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, the single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

Controller Design for Affine T-S Fuzzy System with Parametric Uncertainties (파라미터 불확실성을 갖는 어핀 T-S 퍼지 시스템의 제어기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.133-136
    • /
    • 2004
  • This paper proposes a stability condition in affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

Design of Fuzzy Logic Controller for a SRM Variable Speed Drive on Vehicle (차량용 SRM의 가변속 구동을 위한 퍼지 제어기 설계)

  • 송병섭;엄기명;윤용호;원충연;김덕근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • Switched reluctance motor drives have been finding their applications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. Fuzzy control does not need any model of plant. It is based on plant operator experience and heuristics. Fuzzy control is basically adaptive and gives robust performance for plant parameter variation. This paper deals with the sped control of switched reluctance motor using fuzzy controller with 7-rule based fuzzy logic. The proposed fuzzy controller is superior to the control performance of the conventional PI controller. The fuzzy controller is implemented by 80C196KC, 16 bit one-chip microcontroller.

  • PDF

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

Improved 3-DOF Attitude Control of a Model Helicopter using Fuzzy-Tuning PID Controller (퍼지 동조 PID 제어기를 이용한 모형 헬리콥터의 개선된 3자유도 자세제어)

  • Park, Mun-Soo;Park, Duck-Gee;Jung, Won-Jae;Kim, Byung-Do;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2470-2472
    • /
    • 2001
  • This paper describes the application of a fuzzy-tuning PID controller to a 3-DOF attitude control of a small model helicopter in hover for the compensation of coupling effects between each axis and system uncertainties due to the variation of engine RPM. A Low-level PID controller is designed by Ziegler-Nichols method and its gains are tuned by a high-level fuzzy system based on error states and its time derivatives. The experimental results show that the attitude control performance of fuzzy-tuning PID controller is improved comparing with that of a Ziegler-Nichols PID controller and fuzzy controller.

  • PDF

Adaptive Fuzzy Control for High Performance Speed Control of Induction Motor Drive (유도전동기의 고성능 속도제어를 위한 적응퍼지제어)

  • Lee Hong-Gyun;Lee Jung-Chul;Jung Tack-Gi;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.222-224
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(mAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

  • PDF