• Title/Summary/Keyword: Model-Based Approach

Search Result 6,966, Processing Time 0.031 seconds

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

Process Optimal Design in Steady-State Meta Forming considering Strain-Hardening (변형률 경화를 고려한 정상상태 소성가공 공정의 공정 최적설계)

  • 황숭무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.40-43
    • /
    • 2000
  • A process optimal design methodology applicable to steady-state forming with a strain-hardening material is presented. in this approach the optimal design problem is formulated on the basis of a rigid-viscoplastic finite element process model and a derivative based approach is adopted as an optimization technique The process model the schemes for the evaluation of the design sensitivity considering the effect of strain-hardening and an iterative procedure for design optimization are described. the validity of the proposed approach is demonstrated through application to die shape optimal design in extrusion.

  • PDF

A Strategic Approach for Developing a Conceptual Model for Achieving Country Wide Academic Entrepreneurship in Iran

  • Asgari, Omid
    • Journal of Distribution Science
    • /
    • v.12 no.5
    • /
    • pp.93-107
    • /
    • 2014
  • Purpose - The pool of entrepreneurs with progressive qualities such as creativity and innovation was considered concurrently with such factors as work and capital that stimulate economic development and growth. This study aims to present a model to support the development of a strategic approach for achieving an overall academic entrepreneurship system in Iran. Research design, data, and methodology - The research design of this study is based on applied research because of its objectives, using principles and techniques formulated for basic research to solve operational and real organizational issues. This design also drives the method used, describing and interpreting the findings. Secondary data (library research) was used for this study's data collection. Because of this research's essential characteristics, no hypothesis is launched, and no research setting, questionnaire design, population or population sampling, validity or reliability tests, or statistical analysis are needed. Results and Conclusions - The model is created using a strategic approach acting in an octal setting comprising social, cultural, legal, economic, political, technological, competitive, and natural environments to present a conceptual framework for future studies.

Accuracy of EPFM Approach Based on the p-Version of F.E.M. (p-Version 유한요소법에 기초한 EPFM 해석법의 정확성)

  • 홍종현;우광성;박진환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.429-436
    • /
    • 1999
  • The best available solution to predict the fatigue life of structural steels is the implementation of EPFM approach based on the principles and techniques of elasto plastic fracture mechanics. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ΔJ for ΔK that is calculated by the proposed p-version model. The proposed P-version finite element model is formulated by the incremental theory of Plasticity that consists of the constitutive equation fur elastic-perfectly plastic materials, Tresca/von-Mises yield criteria, and associated flow rule. The experimental fatigue test is conducted with five UP(Center Clucked Panels) specimens to validate the accuracy of the p-version finite element model. Also, the results obtained by LTM approach have been compared with those by EPFM approach.

  • PDF

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Performance Analysis and Evaluation of SNMP and Mobile Agent for Efficient Network Management (효율적인 네트워크 관리를 위한 SNMP와 이동 에이전트의 성능 분석 및 평가)

  • 이정우;정진하;윤완오;최상방
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.105-108
    • /
    • 2002
  • This paper analytical models of a centralized approach based on SNMP Protocol, distributed approach based on mobile agent, and mixed model which is tile existing mobile agent model in order to overcome large communication numbers of SNMP and accumulated data of mobile agent. And then, we compare and analyze these analytical models. Performance evaluation results show that performance of mobile agent and the mixed model is less sensitive to the network traffic and more profitable for complex network environment than that of SNMP.

  • PDF

Knowledge-Based Approach for an Object-Oriented Spatial Database System (지식기반 객체지향 공간 데이터베이스 시스템)

  • Kim, Yang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.99-115
    • /
    • 2003
  • In this paper, we present a knowledge-based object-oriented spatial database system called KOBOS. A knowledge-based approach is introduced to the object-oriented spatial database system for data modeling and approximate query answering. For handling the structure of spatial objects and the approximate spatial operators, we propose three levels of object-oriented data model: (1) a spatial shape model; (2) a spatial object model; (3) an internal description model. We use spatial type abstraction hierarchies(STAHs) to provide the range of the approximate spatial operators. We then propose SOQL, a spatial object-oriented query language. SOQL provides an integrated mechanism for the graphical display of spatial objects and the retrieval of spatial and aspatial objects. To support an efficient hybrid query evaluation, we use the top-down spatial query processing method.

  • PDF

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.