• Title/Summary/Keyword: Model input parameter

Search Result 694, Processing Time 0.026 seconds

Robust Multi-Hump Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Multi-Hump Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.112-119
    • /
    • 2001
  • A variety of input shaper has been proposed to reduce the residual vibration of flexible structures. Multi-hump input shaper is known to be robust for parameter variations. However, existing approach should solve the more complicated nonlinear simultaneous equations to improve the robustness of the input shaper with the additional constraints. In this paper, by proposing a graphical approach which uses convolution of shaper, the multi-hump convolution input shaper could be designed even if the constraints are added for further robustness. With a mass-damper-spring model, the better performance is obtained using the proposed new multi-hump convolution input shaper.

  • PDF

An adaption algorithm for parallel model reference bilinear systems

  • Yeo, Yeong-Koo;Song, Hyung-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.721-723
    • /
    • 1987
  • An Adaptation algorithm is presented and a convergence criterion is derived for parallel model reference adaptive bilinear systems. The output error converges asymptotically to zero, and the parameter estimates are bounded for stable reference models. The convergence criterion depends only upon the input sequence and a priori estimates of the maximum parameter values.

  • PDF

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.

Extraction and Implementation of MPEG-4 Facial Animation Parameter for Web Application (웹 응용을 위한 MPEC-4 얼굴 애니메이션 파라미터 추출 및 구현)

  • 박경숙;허영남;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1310-1318
    • /
    • 2002
  • In this study, we developed a 3D facial modeler and animator that will not use the existing method by 3D scanner or camera. Without expensive image-input equipments, we can easily create 3D models only using front and side images. The system is available to animate 3D facial models as we connect to animation server on the WWW which is independent from specific platforms and softwares. It was implemented using Java 3D API. The facial modeler detects MPEG-4 FDP(Facial Definition Parameter) feature points from 2D input images, creates 3D facial model modifying generic facial model with the points. The animator animates and renders the 3D facial model according to MPEG-4 FAP(Facial Animation Parameter). This system can be used for generating an avatar on WWW.

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

Fluid Queueing Model with Fractional Brownian Input

  • Lee, Jiyeon
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.649-663
    • /
    • 2002
  • We consider an unlimited fluid queueing model which has Fractional Brownian motion(FBM) as an input and a single server of constant service rate. By using the result of Duffield and O'Connell(6), we investigate the asymptotic tail-distribution of the stationary work-load. When there are multiple homogeneous FBM inputs, the workload distribution is similar to that of the queue with one FBM input; whereas for the heterogeneous sources the asymptotic work-load distributions is dominated by the source with the largest Hurst parameter.

Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

  • Yun, Jongyeon;Choi, Kyu-Cheol;Yi, Jonghyuk;Kim, Jaehun;Odstrcil, Dusan
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.265-271
    • /
    • 2016
  • Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

Tuning of Dual-input PSS and Its Application to 612 MVA Thermal Plant: Part 1-Tuning Methology of IEEE Type PSS2A Model (다중입력 PSS 튜닝 방법과 612 MVA 화력기 적용: Part 1-IEEE PSS2A 튜닝 방법)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Sung-Min;Kim, Jin-Yi;Hwang, Bong-Hwan;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.655-664
    • /
    • 2009
  • This paper, Part 1, describes the effective dual-input PSS parameter design procedure for the IEEE Type PSS2A against the Dangjin 612 MVA thermal plant's EX2000 excitation system. The suggested tuning technique used the model-based PSS tuning method and consisted of three steps: 1) generation system modeling; 2) determination of PSS2A model parameters using linear, time-domain transient and 3-phase simultaneous analyses, and 3) field testing and verification, which are described in Part 2. The effective PSS2A model parameters of EX2000 system in the Dangjin T/P #4 were designed according to the suggested procedure, and verified by using three analyses.

A Frequency Analysis of the Control Input for Right Test (비행시험용 조종입력의 주파수분석)

  • Kwon Tae-Hee;Chang Jae-Won;Choi Sun-Woo;Seong Kie-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2005
  • After the development of the Firefly, flight tests have been performed to verify the performance and get the parameters for the mathematical model of the aircraft. The flight test data is used to get parameters for the mathematical model of the aircraft through the parameter identification process. An arbitrary control input is applied to the test flight which is a part of parameter identification process. A square wave has been used a control input which is called Doublet signal. The aspect of the signal is same length and magnitude in both (+) and (-) directions such as sine wave. The Doublet signal is composed of a dominant frequency and many high frequencies, so that it is appropriate signal to excite the motion of an aircraft. In this paper, the control input of the flight test data has been analyzed to check the efficiency of the control input using DFT(Discrete Fourier Transform). From the result of analysis, an alternative input was extracted.

Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer (내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계)

  • Lee, Cho-Won;Kim, In Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.