• Title/Summary/Keyword: Model foundation

Search Result 2,259, Processing Time 0.026 seconds

Numerical Analysis of Curling Behavior of Prestressed Approach Slab Subjected to Environmental Loads (환경하중에 의한 교량 프리스트레스 접속슬래프의 컬링 거동 수치 해석적 분석)

  • Park, Hee-Beom;Eum, In-Sub;Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.7-14
    • /
    • 2011
  • The numerical analyses were performed to investigate the curling behavior of the post-tensioned prestressed concrete approach slab (PTAS) under environmental loads. A technique to include properly the boundary conditions of one end of PTAS that was connected to the bridge abutment using hinges was proposed for the numerical model. The applicability of a simplified model not having hunches was also investigated. By using the developed models, the curling behavior of PTAS was analyzed when the foundation settlement occurred. The analysis results showed that the maximum tensile stress obtained from the simplified model involving a simplified hinge connection was very closed to that obtained from a rigorous model. When the slab curled up, the maximum tensile stress occurred in the model including no foundation settlement, but when the slab curled down, the maximum stress occurred in the model including partial settlement of the foundation. Therefore, the design of PTAS should be performed considering those maximum tensile stresses.

An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils

  • Luat, Nguyen-Vu;Nguyen, Van-Quang;Lee, Seunghye;Woo, Sungwoo;Lee, Kihak
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.583-598
    • /
    • 2020
  • This study is attempted to propose a new hybrid artificial intelligence model called integrative genetic algorithm with multivariate adaptive regression splines (GA-MARS) for settlement prediction of shallow foundations on sandy soils. In this hybrid model, the evolution algorithm - Genetic Algorithm (GA) was used to search and optimize the hyperparameters of multivariate adaptive regression splines (MARS). For this purpose, a total of 180 experimental data were collected and analyzed from available researches with five-input variables including the bread of foundation (B), length to width (L/B), embedment ratio (Df/B), foundation net applied pressure (qnet), and average SPT blow count (NSPT). In further analysis, a new explicit formulation was derived from MARS and its accuracy was compared with four available formulae. The attained results indicated that the proposed GA-MARS model exhibited a more robust and better performance than the available methods.

Failure Probability of Scoured Pier Foundation under Bi-directional Ground Motions (2방향 지진하중을 받는 세굴된 교각기초의 파괴확률분석)

  • 김상효;마호성;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.300-307
    • /
    • 2002
  • Bridge foundation failure considering the effect of local scour around pier foundations under hi-directional seismic excitations is examined in probabilistic perspectives. The seismic responses of bridges with deep foundations are evaluated with a simplified mechanical model, which can consider the local scour effect around the deep foundation in addition to many other components. The probabilistic characteristics of local scour depths are estimated by using the Monte Carlo simulation. The probabilistic characteristics of basic random variables used in the Monte Carlo simulation are determined from the actual hydraulic data collected in middle size streams in Korea. The failure condition of deep foundation is assumed as bearing capacity failure of the ground below the foundation base. The probability of foundation failure of a simply supported bridge with various scour conditions and hi-directional seismic excitations are examined. It is found that the local scour and the recovery duration are critical factors in evaluating the probability of foundation failure. Moreover, the probability of foundation failure under hi-directional seismic excitations is much higher than under uni-directional seismic excitations. Therefore, it is reasonable to consider hi-directional seismic excitations in evaluating the seismic safety of bridge systems scoured by a flood.

  • PDF

Load-Settlement Characteristics of Concrete TOP-BASE Foundation on Soft Ground (팽이기초공법(Top-Base Method)의 하중-침하량 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Lee, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.210-221
    • /
    • 2009
  • A new foundation type which is called Top-Base method has been used frequently in engineering practices in Korea. In this study, the settlement behavior of concrete Top-Base foundation on soft ground is investigated since the consolidation settlement of the embedding depth and the effect of footing dimensions are not included in current Korean criterion (2007). To obtain detailed information, the model tests of the Top-Base foundation are performed using the PLAXIS 3D finite element analysis. It is shown that in-situ measurements and finite element analysis of the behavior of foundations indicate that consolidation settlement is reduced up and bearing capacity of the foundation increases up to 50%~100%, compared to the primary non-treated ground. Based on this study, it is found that the Top-Base foundation prevents the lateral deformation of soft ground and reduces its negative dilatancy to the surface settlement, and that the foundation creates rather uniform stress distribution under it to increase its bearing capacity. It is also found that the total settlement of Top-Base foundation was highly dependent on the consolidation settlement and footing configurations.

  • PDF

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations

  • Lee, So-Young;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.525-539
    • /
    • 2019
  • In this study, vibration characteristics of a gravity-based caisson-foundation breakwater system are investigated for ambient and geometric parameters such as various waves, sea levels, and foundation conditions. To achieve the objective, following approaches are implemented. Firstly, operational modal analysis methods are selected to identify vibration modes from output-only dynamic responses. Secondly, a finite element model of an existing caisson-foundation breakwater system is established by using a structural analysis program, ANSYS. Thirdly, forced vibration analyses are performed on the caisson-foundation system for two types of external forces such as controlled impacts and wave-induced dynamic pressures. For the ideal impact, the wave force is converted to a triangular impulse function. For the wave flow, the wave pressure acting on the system is obtained from wave field analysis. Fourthly, vibration modes of the caisson-foundation system are identified from the forced vibration responses by combined use of the operational modal analysis methods. Finally, vibration characteristics of the caisson-foundation system are investigated under various waves, sea levels, and foundations. Relative effects of foundation conditions on vibration characteristics are distinguished from that induced by waves and sea levels.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

The Evaluation of Stability for Hook-type Bonding Method of Pile Foundation and Cap (훅타입 말뚝두부보강 기초의 안정성 평가)

  • Lee, Heunggil;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • The typical bonding methods which connect steel pipe pile and spread footing is bolted bonding method using +type cover plate for reinforcing a head of steel pipe pile. In this paper, stability of spread footing in pile foundation have been evaluated by loading test of +type cover plate for reinforcing a head of pile and hook type bonding method. The presents results from a series of pilot model test on vertically loaded piles foundation of bolted bonding method and hook type bonding method, pile foundation is identified to safety due to pile foundation exceed 8.5~21% which more than yield stress of steel pipe pile. As the results of horizontal loading tests, peak load of piles foundation of hook type bonding method has estimated in 41.1tonf and it was exceed about 33% which more than pile foundation of bolted bonding method.

  • PDF

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

Influence of soil model complexity on the seismic response of shallow foundations

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.193-203
    • /
    • 2021
  • The time-history finite element analysis is usually used to evaluate the seismic response of shallow foundations. However, the literature lacks studies on the influence of the soil constitutive model complexity on the seismic response of shallow foundations. This study, thus, aims to fill this gap by investigating the seismic response of shallow foundation resting on dry silica sand using the linear elastic (LE) model, elastic-perfectly-plastic (EPP) model, and hardening soil with small strain stiffness (HS small) model. These models have been used because it is intended to compare the results of a soil constitutive model that accurately captures the seismic response of the soil-structure interaction problems (which is the HS small model) with simpler models (the LE and EPP models) that are routinely used by practitioners in geotechnical designs. The results showed that the LE model produces a very small seismic settlement value which is approximately equal to zero. The EPP model predicts a seismic settlement higher than that produced using the HS small model for earthquakes with a peak ground acceleration (PGA) lower than 0.25 g for a relative density of 45% and 0.40 g for a relative density of 70%. However, the HS small model predicts a seismic settlement higher than the EPP model beyond the aforementioned PGA values with the difference between both models increases as the PGA rises. The results also showed that the LE and EPP models predict similar trend and magnitude of the acceleration-time relationship directly below the foundation, which was different than that predicted using the HS small model. The results reported in this paper provide a useful benchmark for future numerical studies on the response of shallow foundations subjected to seismic shake.