• Title/Summary/Keyword: Model Verification System

Search Result 1,238, Processing Time 0.028 seconds

Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway (스마트교통시대의 종단 및 횡단 복합도로선형 구간에서의 가감속 시나리오별 최적주행 방법론)

  • Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.73-82
    • /
    • 2017
  • As of December 2016, the number of registered automobiles in Korea exceeds 21million. As a result, greenhouse gas emission by transportation sector are increasing every year. It was concluded that the development of the driving strategy considering the driving behavior and the road conditions, which are known to affect the fuel efficiency and the greenhouse gas emissions, could be the most effective fuel economy improvement. Therefore, this study aims to develop a fuel efficient driving strategy in a complex linear section with uphill and curved sections. The road topography was designed according to 'Rules about the Road Structure & Facilities Standards'. Various scenarios were selected. After generating the speed profile, it was applied to the Comprehensive Modal Emission Model and fuel consumption was calculated. The scenarios with the lowest fuel consumption were selected. After that, the fuel consumption of the manual driver's driving record and the selected optimal driving strategy were compared and analyzed for verification. As a result of the analysis, the developed optimal driving strategy reduces fuel consumption by 21.2% on average compared to driving by manual drivers.

A Study on the Analytic Unit of Habitat Suitability Assessment and Selection in Conservation Areas for Leopard Cat(Prionailurus bengalensis) - Focus on Chungcheong Province Area - (삵의 서식지 적합성 평가를 위한 분석단위 설정 및 보전지역 선정 - 충청도 지역을 중심으로 -)

  • Lee, Dong-Kun;Song, Won-Kyong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.64-72
    • /
    • 2008
  • The purpose of this study is to compare a habitat suitability grid unit included within a radius of 100m and $1km^2,\;2km^2,\;4km^2$ watershed units in order to predict suitable habitats for Chungcheong province's endangered leopard species(Prionailurus bengalensis). Other developed countries have carried out habitat assessment and established management policies for species conservation using such methods as HEP(Habitat Evaluation Procedures), HSI(Habitat Suitability Index) and GAP(Gap Analysis Program), etc. In accordance with these studies, many evaluation methods for habitat conservation have been proposed in Korea, but these studies are lacking in consideration of analytic units and general application of analysis results. This study predicted leopard habitat using a logistic regression analysis according to analytic units by data from 56 location and 8 sources of environmental data, including elevation, slope, forest area, land cover, roads, water, broadleaf trees, and human habitation. Moreover, the habitat suitability assessment unit was confirmed by a model comparison process encompassing model explanation. verification, and application on a regional scale. Results showed that assessment methods that took into consideration areas in and around the location points were beneficial in predicting habitat and that the assessment unit was appropriate for a 30m grid unit including areas within a radius of 100m and a $1km^2$ watershed unit in Chungcheong Province. This study suggests a method for regional habitat conservation to complement existing conservation area selection methods, and the results are expected to be used in conservation area selection and ecosystem management policies for endangered species.

A Study on Team Collaboration Affecting Team Performance: Mediating Effect of Team Shared Cognition, Team Transactive Memory, Team Knowledge Integration, and Team Efficacy with Focus on Consulting Projects (팀성과에 영향을 미치는 팀협업에 관한 연구: 컨설팅 프로젝트를 중심으로 팀공유인지, 팀정보교류, 팀지식통합, 팀효능감의 매개효과)

  • Chae-Sang Shin;Jung-Wan Hong
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.9-31
    • /
    • 2023
  • This study is a study on the different cognitive systems and different knowledge systems of members participating in complex and diverse consulting projects, and it is a study on team collaboration that affects the team performance of the project. The purpose of this study is to analyze the mediating effects of team shared cognition, team transactive memory, team knowledge integration, and team efficacy in the cognitive interaction process of a consulting project. This study established a research model and research hypothesis based on previous studies. Data were collected from consultants who actually participated in the consulting project. To empirically analyze the research hypothesis, demographic analysis, validity and reliability analysis, structural model analysis for hypothesis verification, and mediating effect analysis using phantom variables were performed. As a result of the study, in order to increase team performance, it is necessary to improve team shared cognition and team transactive memory, which are cognitive systems, and team knowledge integration, which is a knowledge system, must also be improved. Therefore, there is a need for a sense of team efficacy that integrates disparate cognitive and knowledge systems, trusts each other's expertise, and enables successful team work. In addition, future studies on sub-factors of cognitive processes are needed.

Research on APC Verification for Disaster Victims and Vulnerable Facilities (재난약자 및 취약시설에 대한 APC실증에 관한 연구)

  • Seungyong Kim;Incheol Hwang;Dongsik Kim;Jungjae Shin;Seunggap Yong
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.199-205
    • /
    • 2024
  • Purpose: This study aims to improve the recognition rate of Auto People Counting (APC) in accurately identifying and providing information on remaining evacuees in disaster-vulnerable facilities such as nursing homes to firefighting and other response agencies in the event of a disaster. Methods: In this study, a baseline model was established using CNN (Convolutional Neural Network) models to improve the algorithm for recognizing images of incoming and outgoing individuals through cameras installed in actual disaster-vulnerable facilities operating APC systems. Various algorithms were analyzed, and the top seven candidates were selected. The research was conducted by utilizing transfer learning models to select the optimal algorithm with the best performance. Results: Experiment results confirmed the precision and recall of Densenet201 and Resnet152v2 models, which exhibited the best performance in terms of time and accuracy. It was observed that both models demonstrated 100% accuracy for all labels, with Densenet201 model showing superior performance. Conclusion: The optimal algorithm applicable to APC among various artificial intelligence algorithms was selected. Further research on algorithm analysis and learning is required to accurately identify the incoming and outgoing individuals in disaster-vulnerable facilities in various disaster situations such as emergencies in the future.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Monte Carlo Study Using GEANT4 of Cyberknife Stereotactic Radiosurgery System (GEANT4를 이용한 정위적 사이버나이프 선량분포의 계산과 측정에 관한 연구)

  • Lee, Chung-Il;Shin, Jae-Won;Shin, Hun-Joo;Jung, Jae-Yong;Kim, Yon-Lae;Min, Jeong-Hwan;Hong, Seung-Woo;Chung, Su-Mi;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Cyberknife with small field size is more difficult and complex for dosimetry compared with conventional radiotherapy due to electronic disequilibrium, steep dose gradients and spectrum change of photons and electrons. The purpose of this study demonstrate the usefulness of Geant4 as verification tool of measurement dose for delivering accurate dose by comparing measurement data using the diode detector with results by Geant4 simulation. The development of Monte Carlo Model for Cyberknife was done through the two-step process. In the first step, the treatment head was simulated and Bremsstrahlung spectrum was calculated. Secondly, percent depth dose (PDD) was calculated for six cones with different size, i.e., 5 mm, 10 mm, 20 mm, 30 mm, 50 mm and 60 mm in the model of water phantom. The relative output factor was calculated about 12 fields from 5 mm to 60 mm and then it compared with measurement data by the diode detector. The beam profiles and depth profiles were calculated about different six cones and about each depth of 1.5 cm, 10 cm and 20 cm, respectively. The results about PDD were shown the error the less than 2% which means acceptable in clinical setting. For comparison of relative output factors, the difference was less than 3% in the cones lager than 7.5 mm. However, there was the difference of 6.91% in the 5 mm cone. Although beam profiles were shown the difference less than 2% in the cones larger than 20 mm, there was the error less than 3.5% in the cones smaller than 20 mm. From results, we could demonstrate the usefulness of Geant4 as dose verification tool.

Experimental Analysis of Nodal Head-outflow Relationship Using a Model Water Supply Network for Pressure Driven Analysis of Water Distribution System (상수관망 압력기반 수리해석을 위한 모의 실험시설 기반 절점의 압력-유량 관계 분석)

  • Chang, Dongeil;Kang, Kihoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.421-428
    • /
    • 2014
  • For the analysis of water supply network, demand-driven and pressure-driven analysis methods have been proposed. Of the two methods, demand-driven analysis (DDA) can only be used in a normal operation condition to evaluate hydraulic status of a pipe network. Under abnormal conditions, i.e., unexpected pipe destruction, or abnormal low pressure conditions, pressure-driven analysis (PDA) method should be used to estimate the suppliable flowrate at each node in a network. In order to carry out the pressure-driven analysis, head-outflow relationship (HOR), which estimates flowrate at a certain pressure at each node, should be first determined. Most previous studies empirically suggested that each node possesses its own characteristic head-outflow relationship, which, therefore, requires verification by using actual field data for proper application in PDA modeling. In this study, a model pipe network was constructed, and various operation scenarios of normal and abnormal conditions, which cannot be realized in real pipe networks, were established. Using the model network, data on pressure and flowrate at each node were obtained at each operation condition. Using the data obtained, previously proposed HOR equations were evaluated. In addition, head-outflow relationship at each node was analyzed especially under multiple pipe destruction events. By analyzing the experimental data obtained from the model network, it was found that flowrate reduction corresponding to a certain pressure drop (by pipe destruction at one or multiple points on the network) followed intrinsic head-outflow relationship of each node. By comparing the experimentally obtained head-outflow relationship with various HOR equations proposed by previous studies, the one proposed by Wagner et al. showed the best agreement with the exponential parameter, m of 3.0.

A Methodology to Develop a Curriculum of Landscape Architecture based on National Competency Standards (국가직무능력표준(NCS) 기반 조경분야 교육과정 개발)

  • Byeon, Jae-Sang;Shin, Sang-Hyun;Ahn, Seong-Ro
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.23-39
    • /
    • 2017
  • This study began from the question, "is there a way to efficiently apply industrial demand in the university curriculum?" Research focused on how to actively accept and respond to the era of the NCS (National Competency Standards). In order to apply NCS to individual departments of the university, industrial personnel must positively participate to form a practical-level curriculum by the NCS, which can be linked to the work and qualifications. A valid procedure for developing a curriculum based on the NCS of this study is as follows: First, the university must select a specific classification of NCS considering the relevant industry outlook, the speciality of professors in the university, the relationship with regional industries and the prospects for future employment, and the need for industrial manpower. Second, departments must establish a type of human resource that compromises goals for the university education and the missions of the chosen NCS. In this process, a unique competency unit of the university that can support the basic or applied subjects should be added to the task model. Third, the task model based on the NCS should be completed through the verification of each competency unit considering the acceptance or rejection in the curriculum. Fourth, subjects in response to each competency units within the task model should be developed while considering time and credits according to university regulations. After this, a clear subject description of how to operate and evaluate the contents of the curriculum should be created. Fifth, a roadmap for determining the period of operating subjects for each semester or year should be built. This roadmap will become a basis for the competency achievement frame to decide upon the adoption of a Process Evaluation Qualification System. In order for the NCS to be successfully established within the university, a consensus on the necessity of the NCS should be preceded by professors, students and staff members. Unlike a traditional curriculum by professors, the student-oriented NCS curriculum is needed sufficient understanding and empathy for the many sacrifices and commitment of the members of the university.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

Dual-mode Pseudorandom Number Generator Extension for Embedded System (임베디드 시스템에 적합한 듀얼 모드 의사 난수 생성 확장 모듈의 설계)

  • Lee, Suk-Han;Hur, Won;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.95-101
    • /
    • 2009
  • Random numbers are used in many sorts of applications. Some applications, like simple software simulation tests, communication protocol verifications, cryptography verification and so forth, need various levels of randomness with various process speeds. In this paper, we propose a fast pseudorandom generator module for embedded systems. The generator module is implemented in hardware which can run in two modes, one of which can generate random numbers with higher randomness but which requires six cycles, the other providing its result within one cycle but with less randomness. An ASIP (Application Specific Instruction set Processor) was designed to implement the proposed pseudorandom generator instruction sets. We designed a processor based on the MIPS architecture,, by using LISA, and have run statistical tests passing the sequence of the Diehard test suite. The HDL models of the processor were generated using CoWare's Processor Designer and synthesized into the Dong-bu 0.18um CMOS cell library using the Synopsys Design Compiler. With the proposed pseudorandom generator module, random number generation performance was 239% faster than software model, but the area increased only 2.0% of the proposed ASIP.