• Title/Summary/Keyword: Model Optimization

Search Result 5,636, Processing Time 0.038 seconds

Optimization Routing Model for Installation of Clustered Engineering Obstacles with Precedence Constraint (선행제약을 고려한 권역단위 공병장애물 설치경로 최적화 모형)

  • Dongkeun Yoo;Suhwan Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • This paper presents a path planning optimization model for the engineering units to install obstacles in the shortest time during wartime. In a rapidly changing battlefield environment, engineering units operate various engineering obstacles to fix, bypass, and delay enemy maneuvers, and the success of the operation lies in efficiently planning the obstacle installation path in the shortest time. Existing studies have not reflected the existence of obstacle material storage that should be visited precedence before installing obstacles, and there is a problem that does not fit the reality of the operation in which the installation is continuously carried out on a regional basis. By presenting a Mixed Integrer Programming optimization model reflecting various constraints suitable for the battlefield environment, this study attempted to promote the efficient mission performance of the engineering unit during wartime.

An Empirical Study on Statistical Optimization Model for the Portfolio Construction of Sponsored Search Advertising(SSA) (키워드검색광고 포트폴리오 구성을 위한 통계적 최적화 모델에 대한 실증분석)

  • Yang, Hognkyu;Hong, Juneseok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.167-194
    • /
    • 2019
  • This research starts from the four basic concepts of incentive incompatibility, limited information, myopia and decision variable which are confronted when making decisions in keyword bidding. In order to make these concept concrete, four framework approaches are designed as follows; Strategic approach for the incentive incompatibility, Statistical approach for the limited information, Alternative optimization for myopia, and New model approach for decision variable. The purpose of this research is to propose the statistical optimization model in constructing the portfolio of Sponsored Search Advertising (SSA) in the Sponsor's perspective through empirical tests which can be used in portfolio decision making. Previous research up to date formulates the CTR estimation model using CPC, Rank, Impression, CVR, etc., individually or collectively as the independent variables. However, many of the variables are not controllable in keyword bidding. Only CPC and Rank can be used as decision variables in the bidding system. Classical SSA model is designed on the basic assumption that the CPC is the decision variable and CTR is the response variable. However, this classical model has so many huddles in the estimation of CTR. The main problem is the uncertainty between CPC and Rank. In keyword bid, CPC is continuously fluctuating even at the same Rank. This uncertainty usually raises questions about the credibility of CTR, along with the practical management problems. Sponsors make decisions in keyword bids under the limited information, and the strategic portfolio approach based on statistical models is necessary. In order to solve the problem in Classical SSA model, the New SSA model frame is designed on the basic assumption that Rank is the decision variable. Rank is proposed as the best decision variable in predicting the CTR in many papers. Further, most of the search engine platforms provide the options and algorithms to make it possible to bid with Rank. Sponsors can participate in the keyword bidding with Rank. Therefore, this paper tries to test the validity of this new SSA model and the applicability to construct the optimal portfolio in keyword bidding. Research process is as follows; In order to perform the optimization analysis in constructing the keyword portfolio under the New SSA model, this study proposes the criteria for categorizing the keywords, selects the representing keywords for each category, shows the non-linearity relationship, screens the scenarios for CTR and CPC estimation, selects the best fit model through Goodness-of-Fit (GOF) test, formulates the optimization models, confirms the Spillover effects, and suggests the modified optimization model reflecting Spillover and some strategic recommendations. Tests of Optimization models using these CTR/CPC estimation models are empirically performed with the objective functions of (1) maximizing CTR (CTR optimization model) and of (2) maximizing expected profit reflecting CVR (namely, CVR optimization model). Both of the CTR and CVR optimization test result show that the suggested SSA model confirms the significant improvements and this model is valid in constructing the keyword portfolio using the CTR/CPC estimation models suggested in this study. However, one critical problem is found in the CVR optimization model. Important keywords are excluded from the keyword portfolio due to the myopia of the immediate low profit at present. In order to solve this problem, Markov Chain analysis is carried out and the concept of Core Transit Keyword (CTK) and Expected Opportunity Profit (EOP) are introduced. The Revised CVR Optimization model is proposed and is tested and shows validity in constructing the portfolio. Strategic guidelines and insights are as follows; Brand keywords are usually dominant in almost every aspects of CTR, CVR, the expected profit, etc. Now, it is found that the Generic keywords are the CTK and have the spillover potentials which might increase consumers awareness and lead them to Brand keyword. That's why the Generic keyword should be focused in the keyword bidding. The contribution of the thesis is to propose the novel SSA model based on Rank as decision variable, to propose to manage the keyword portfolio by categories according to the characteristics of keywords, to propose the statistical modelling and managing based on the Rank in constructing the keyword portfolio, and to perform empirical tests and propose a new strategic guidelines to focus on the CTK and to propose the modified CVR optimization objective function reflecting the spillover effect in stead of the previous expected profit models.

Finite Element Model Updating Using Satisficing Trade-off Method (Satisficing Trade-off 방법을 이용한 유한요소 모델 개선)

  • Kim, Gyeong-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.295-300
    • /
    • 2002
  • In conventional model updating using single-objective optimization techniques, incompatible physical data are compared with each other using weighting factors. There are no general rules for selecting the weighting factors since they are not directly related with the dynamic behavior of an updated model. So one of the most difficult tasks, in model updating study, is 'balancing among the correlations' i.e. 'trade-off'. In this work, a multiobjecitive optimization technique called 'satisficing trade-off method' is introduced to extremize several correlations simultaneously. The absurd need for the weighting factors can be avoided using this technique. And the updated model with the most appropriate correlations is obtained easily in interactive way. Especially automatic trade-off is employed to increase the rate of convergence to the desired model. Its effectiveness is verified by application to a real engineering problem, HDD cover model updating.

  • PDF

Simple Modeling of Floor Heating Systems based on Optimal Parameter Settings (최적 파라미터를 이용한 단순 모델 기반 바닥 난방 시스템 모델링)

  • Park, Seung Hoon;Jang, Yong Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.472-481
    • /
    • 2017
  • Radiant floor heating systems have been used as common heating supply systems in most residential buildings in Korea. Since the system uses a floor as thermal storage, proper control strategy should be adopted to avoid over-or under-heating problems. So far, studies related to control of the floor heating system have been conducted based on computer simulations. The active layer in TRNSYS is known for its usability as a floor heating system model and is integrated with the TRNSYS building model (Type 56). However, floor heating system simulations with the active layer are operated only if pre-defined minimum mass flow rate is ensured. This study proposes a simple RC (Resistance-Capacitance) model for radiant floor heating systems. Model parameters such as Rs and Cs are defined by optimization. The active layer, in this study, is used as the target system to search for optimal values. A TRNOPT optimization tool was used to conduct optimization under given simulation conditions. The RC model with optimal parameters are tested in other mass flow rates that were not used during optimization. Results reveal the RC model describes the active layer with successfully optimized model parameters. The RC model has fewer model limitations, and is expected to be used for various target systems, e.g. experimental data of a real radiant heating system.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 1: Design Method (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제1편: 설계 방법)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.148-157
    • /
    • 2012
  • Reliability-based design optimization (RBDO) problem is usually formulated as an optimization problem to minimize an objective function subjected to probabilistic constraint functions which may include deterministic design variables as well as random variables. The challenging task is that, because the probability models of the random variables are often assumed based on limited data, there exists a possibility of selecting inappropriate distribution models and/or model parameters for the random variables, which can often lead to disastrous consequences. In order to select the most appropriate distribution model from the limited observation data as well as model parameters, this study takes into account a set of possible candidate models for the random variables. The suitability of each model is then investigated by employing performance and risk functions. In this regard, this study enables structural design optimization and fitness assessment of the distribution models of the random variables at the same time. As the first paper of a two-part series, this paper describes a new design method considering probability model uncertainties. The robust performance of the proposed method is presented in Part 2. To demonstrate the effectiveness of the proposed method, an example of ten-bar truss structure is considered. The numerical results show that the proposed method can provide the optimal design variables while guaranteeing the most desirable distribution models for the random variables even in case the limited data are only available.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Design Optimization of Transonic Wing/Fuselage System Using Proper Orthogona1 Decomposition (Proper Orthogonal Decomposition을 이용한 천음속 날개/동체 모텔의 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Cho, Maeng-Hyo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • This paper presents a validation of the accuracy of a reduced order model(ROM) and the efficiency of the design optimization using a Proper Orthogonal Decomposition(POD) to transonic wing/fuselage system. Three dimensional Euler equations are solved to extrude snapshot data of the full order aerodynamic analysis, and then a set of POD basis vectors reproducing the behavior of flow around the wing/fuselage system is calculated from these snapshots. In this study, reduced order model constructed through this procedure is applied to several validation cases, and then it is confirmed that the ROM has the capability of the prediction of flow field in the space of interest. Additionally, after the design optimization of the wing/fuselage system with the ROM is performed, results of the ROM are compared with results of the design optimization using response surface model(RSM). From these, it can be confirmed that the design optimization with the ROM is more efficient than RSM.