• Title/Summary/Keyword: Model Co-construction

Search Result 603, Processing Time 0.03 seconds

RISK ANALYSIS FOR INDUSTRIAL PROJECT IN CONSTRUCTION PHASE: A MONTE-CARLO SIMULATION APPROACH

  • Soo-Yong Kim;Luu Truong Van;Han-Ki Ha;Nguyen Quoc Tuan
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.130-139
    • /
    • 2007
  • This paper presents a study on risk analysis in terms of contractor's costs in construction phase in which Crystal ball (software of Decisioneering, UK) has been utilized as a main tool. To realize it, a questionnaire survey has been carried out to identify the dominant factors that strongly influence contractor costs in Vietnam. Based on results of questionnaire investigation, the survey identified three factors which were duration of each construction task, costs of reinforcing steel, and cement. Then a spreadsheet model was created in order to analyze risks. The study also indicates that the cost of reinforcing steel and cement are the cause of risks for contractors. According to the suggested model, contractors may foresee the probability of completion within the approved budget, and the possibility of earning in accordance with owner's payment conditions.

  • PDF

A Study on Terrain Construction of Unmanned Aerial Vehicle Simulator Based on Spatial Information (공간정보 기반의 무인비행체 시뮬레이터 지형 구축에 관한 연구)

  • Park, Sang Hyun;Hong, Gi Ho;Won, Jin Hee;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1122-1131
    • /
    • 2019
  • This paper covers research on terrain construction for unmanned aerial vehicle simulators using spatial information that was distributed by public institutions. Aerial photography, DEM, vector maps and 3D model data were used in order to create a realistic terrain simulator. A data converting method was suggested while researching, so it was generated to automatically arrange and build city models (vWorld provided) and classification methods so that realistic images could be generated by 3D objects. For example: rivers, forests, roads, fields and so on, were arranged by aerial photographs, vector map (land cover map) and terrain construction based on the tile map used by DEM. In order to verify the terrain data of unmanned aircraft simulators produced by the proposed method, the location accuracy was verified by mounting onto Unreal Engine and checked location accuracy.

Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile (Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발)

  • Kim, Jin-Woo;Park, Sung-Woo;Lee, Pyung-Kuk;Lee, Wang-Soo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Development of Trenchless Tunneling Method Using Pressurizing Support and Its Field Application (가압식 지보를 이용한 비개착 터널공법 개발 및 현장적용 사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.17-30
    • /
    • 2012
  • A new trenchless tunneling method using pressurizing support has been developed. As it overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies the pressure corresponding to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways such as numerical tests and various model tests. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long road tunnel that passes under Yeongdong Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months. It decreases the construction period to 35% compared to that of conventional methods, and ground displacement was almost negligible.

Evaluation of Life Cycle Energy Consumption and CO2 Emission of Elementary School of Buildings (초등학교 건축물의 생애주기 에너지사용량 및 이산화탄소 배출량 평가)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • This study investigates and analyzes the total amount of energy consumption and $CO_2$ emission during the material manufacturing, transportation, construction, operation, and disposal phases of eight elementary school buildings in South Korea. Toward this ends, the hybrid LCA model is proposed. The life cycle energy consumption and $CO_2$ emission of eight case buildings are assessed using the hybrid LCA model with an assumption that the operation period is 40 years. As a result, the embodied(sum of the energy consumption in the material manufacturing, transportation and construction phases), operational and disposal energy were 2,279, 11,182, $228Mcal/m^2$, respectively, on average. The average embodied, operational, and disposal $CO_2$ emission were 604, 2,708, 60 kg-$CO_2/m^2$, respectively, on average. This result indicates that about 17% of life cycle energy (or $CO_2$ emission) is consumed in the material manufacturing, transportation and construction phases. Thus, it is necessary to consider the embodied energy and $CO_2$ emission to reduce the life cycle energy and $CO_2$ emission of school buildings. In addition, while the insulation standard of building have been provided based on the climate zone, energy consumption in operation phase still varied depending on the regions in this study. Thus, the insulation standard of building needs to be improved through considering the climate of regions in detail.

Modeling Phased Array Ultrasonic Testing of a Flat-Bottom Hole in a Single Medium

  • Park, Joon-Soo;Kim, Hak-Joon;Song, Sung-Jin;Seong, Un-Hak;Kang, Suk-Chull;Choi, Young-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.467-474
    • /
    • 2005
  • The expanded multi-Gaussian beam model has recently been developed that can calculate the radiation beam field from a single, rectangular transducer with great computational efficiency. In this study, this model is adopted to calculate the radiation beam field for a phased array transducer with various time delays to achieve steering and/or focusing. The calculation beam fields are compared to those obtained by well known Rayleigh-Sommerfeld integral that provides the exact solution in order to explore the validity of the expanded multi-Gaussian beam model And then, this study proposes a complete ultrasonic measurement model including the expanded beam model, far-field scattering model and system efficiency, Using the proposed model, phased array ultrasonic testing signals for a flat-bottomed hole with/without focusing were performed.

Analysis of Carbonation Reduction Coefficient and CO2 uptakes under Finishing Materials (표면마감 조건에 따른 탄산화감소계수 및 CO2 흡수량 산정)

  • Song, Hun;Shin, Hyeon-UK;Chu, Yong-Sik;Lee, Jong-Kyu;Cho, Hyung-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.215-216
    • /
    • 2012
  • Emissions of CO2 occur during the production of cement manufacturing process. During the production of clinker, limestone is mainly calcium carbonate, is heated to produce lime and CO2 as a by-product. It has a major problem, CO2 uptake is not considered in concrete carbonation, just focus in CO2 emission. This study is to develop a simulation model for CO2 uptakes in concrete structures based on carbonation reduction coefficient considering finishing materials. CO2 uptakes unit of concrete cubic meter is calculated by CO2 emissions unit of concrete materials and usage of concrete materials in mix proportion. From the simulation result, CO2 uptake ratios is 2.04 percent in carbonation models of concrete structure during 40 years.

  • PDF

The Change in Modeling Ability of Science-Gifted Students through the Co-construction of Scientific Model (과학적 모델의 사회적 구성 수업을 통한 과학 영재 학생들의 모델링 능력 변화)

  • Park, Hee-Kyung;Choi, Jong-Rim;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, Junehee;Jang, Shinho;Choe, Seung-Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • The purpose of this study is to investigate the changes of students' modeling ability in terms of 'meta-modeling knowledge' and 'modeling practice' through co-construction of scientific model. Co-construction of scientific model instructions about astronomy were given to 41 middle-school students. The students were given a before and after instruction modeling ability tests. The results show that students' 'meta-modeling knowledge' has changed into a more scientifically advanced thinking about models and modeling after the instruction. Students were able to be aware that 'they could express their thoughts using models', 'many models could be used to explain a single phenomena' and 'scientific models may change' through co-construction modeling process. The change in the 'modeling practice' of the students was divided into four cases (the level improving, the level lowering, the high-level maintaining, the low-level maintaining) depending on the change of pre-posttest levels. The modeling practice level of most students has improved through the instruction. These changes were influenced by co-construction process that provides opportunities to compete and compare their models to other models. Meanwhile, the modeling practice level of few students has lowered or maintained low level. Science score of these students at school was relatively high and they thought that the goal of learning is to get a higher score in exams by finding the correct answer. This means that students who were kept well under traditional instruction may feel harder to adapt to co-construction of scientific model instruction, which focuses more on the process of constructing knowledge based on evidences.

Estimating Risk Interdependency Ratio for Construction Projects: Using Risk Checklist in Pre-construction Phase

  • Kim, Junyoung;Lee, Hyun-Soo;Park, Moonseo;Kwon, Nahyun
    • Architectural research
    • /
    • v.21 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • Risk assessment during pre-construction phase is important due to the uncertainty of the risks that may exist in projects. Risk checklist is a method to systematically classify and organize the risks that have been experienced in the past, and to identify the risk factors that may be present in the future projects. In addition, risk value assessment based on checklists plays a key role in risk management, and various risk assessment researches have been conducted to carry out this systematically. However, previous approaches have limitations in common, this is because risk values are evaluated individually in risk checklists, which ignore interdependencies among risk factors and neglect the emergence of co-occurrence of risks. Hence, when multiple risk factors cooccur, they cannot be far off from the conventional method of summing the total risk value to establish the risk response strategy. Most of risk factors are interdependent and may have multiple effects if occurred than expected. In particular, specific cause can be overlapped if multiple risks co-occur, and this may result in overestimation of the risk response for the future project. Thus, the objective of this research is to propose a model to help decision makers to quantify the risk value reflecting the interdependency during the identification phase using existing risk checklist that is currently being practiced in actual construction projects. The proposed model will provide the guideline to support the prediction and identification of the interdependency of risks in practice. In addition, the better understanding and prediction of the exceeding risk response by co-occurring risks during the risk identification phase for decision makers.