DOI QR코드

DOI QR Code

The Change in Modeling Ability of Science-Gifted Students through the Co-construction of Scientific Model

과학적 모델의 사회적 구성 수업을 통한 과학 영재 학생들의 모델링 능력 변화

  • Received : 2015.10.27
  • Accepted : 2016.01.20
  • Published : 2016.02.29

Abstract

The purpose of this study is to investigate the changes of students' modeling ability in terms of 'meta-modeling knowledge' and 'modeling practice' through co-construction of scientific model. Co-construction of scientific model instructions about astronomy were given to 41 middle-school students. The students were given a before and after instruction modeling ability tests. The results show that students' 'meta-modeling knowledge' has changed into a more scientifically advanced thinking about models and modeling after the instruction. Students were able to be aware that 'they could express their thoughts using models', 'many models could be used to explain a single phenomena' and 'scientific models may change' through co-construction modeling process. The change in the 'modeling practice' of the students was divided into four cases (the level improving, the level lowering, the high-level maintaining, the low-level maintaining) depending on the change of pre-posttest levels. The modeling practice level of most students has improved through the instruction. These changes were influenced by co-construction process that provides opportunities to compete and compare their models to other models. Meanwhile, the modeling practice level of few students has lowered or maintained low level. Science score of these students at school was relatively high and they thought that the goal of learning is to get a higher score in exams by finding the correct answer. This means that students who were kept well under traditional instruction may feel harder to adapt to co-construction of scientific model instruction, which focuses more on the process of constructing knowledge based on evidences.

본 연구의 목적은 과학적 모델의 사회적 구성 수업을 통한 학생들의 모델링 능력 변화를 '모델과 모델링에 관한 인식'과 '모델링 실행'의 두 측면으로 살펴보는 것이다. 이를 위해, 중학교 2학년 학생 41명을 대상으로 천문학 내용과 관련하여 과학적 모델의 사회적 구성 수업을 실시하고, 수업 전과 후에 각각 모델링 능력 검사를 실시하였다. 검사 결과 학생들의 '모델과 모델링에 관한 인식'은 과학적 모델의 사회적 구성 수업을 통해 더 진보된 관점으로 변화하였다. 학생들은 사회적 구성 활동을 통해 모델을 이용하여 자신의 생각을 표현할 수 있다는 것과, 하나의 현상을 설명할 수 있는 복수의 과학적 모델이 존재하며, 과학적 모델이 변화할 수 있음을 인식하게 되었다. 학생들의 '모델링 실행'의 변화는 사전과 사후의 수준 변화에 따라 4 가지 유형(모델링 수준 상승 유형, 모델링 수준 하강 유형, 높은 수준 유지 유형, 낮은 수준 유지 유형)으로 나누어졌다. 과학적 모델의 사회적 구성 수업을 통해 대부분의 학생들의 '모델링 실행' 수준이 상승하였다. 이러한 변화는 학생들로 하여금 자신의 모델을 다른 모델과 비교하고 경쟁할 수 있는 기회를 제공한 사회적 구성 활동에 영향을 받은 것으로 나타났다. 한편, 일부의 학생들은 오히려 '모델링 실행' 수준이 내려가거나 변화가 없었다. 이 학생들의 학교 과학 성적은 비교적 우수했으며, 정확한 정답을 찾아 시험에서 좋은 성적을 얻는 것을 학습의 목표로 여기고 있었다. 이것은 전통적인 수업방식에 길들여진 학생들이 증거를 기반으로 지식을 구성해가는 과정을 중시하는 과학적 모델의 사회적 구성 수업 방식에 더 큰 어려움을 겪을 수 있다는 것을 말해준다.

Keywords

References

  1. Anderson, C. W. (2007). Perspectives on science learning. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education. (pp. 3-30). New Jersey: Lawrence Erlbaum Associates.
  2. Anderson, D., Lucas, K. B., & Ginns, I. S. (2003). Theoretical perspectives on learning in an informal setting. Journal of Research in Science Teaching, 40(2), 177-199. https://doi.org/10.1002/tea.10071
  3. Baek, H. (2013). Tracing fifth-grade students' epistemologies in modeling through their participation in a model-based curriculum unit (Doctoral Dissertations). Michigan State University, USA.
  4. Baek, H., Schwarz, C. V., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. In Models and modeling (pp. 195-218). Springer Netherlands.
  5. Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. https://doi.org/10.1080/09500693.2011.624133
  6. Cartier, J., Rudolph, J., & Stewart, J. (2001). The nature and structure of scientific models. National Center for Improving Student Learning and Achievement in Mathematics and Science.
  7. Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94. https://doi.org/10.1002/sce.20352
  8. Chang, S. N. (2008). The learning effect of modeling ability instruction. Asia-Pacific Forum on Science Learning and Teaching, 9(2), 1-21.
  9. Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212. https://doi.org/10.1080/02635140500266484
  10. Cho, Y. (2013). A study of transforming pre-service teacher education in postmodern perspectives: Logic and ethics of deconstruction and reconstruction. The Journal of Korean Teacher Education, 30(4), 139-162. https://doi.org/10.24211/tjkte.2013.30.4.139
  11. Clement, J. (1989). Learning via model construction and criticism (pp. 341-381). Springer US.
  12. Clement, J. (2008). Student/teacher co-construction of visualizable models in large group discussion. In J. J. Clement, & M. A. Rea-Ramirez (Eds.) Model based learning and instruction in science. (pp. 203-243). NY: Springer.
  13. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science teaching, 28(9), 799-822. https://doi.org/10.1002/tea.3660280907
  14. Halloun, I. (2006). Modeling theory in science education. Dordrecht: Springer.
  15. Ham, D. (2012). The process of students' model evolution through peer-centered interaction in model construction class of the astronomy domain (Unpublished master thesis). Seoul National University, Seoul.
  16. Harlow, D. B. (2010). Structures and improvisation for inquiry-based science instruction: A teacher's adaptation of a model of magnetism activity. Science Education, 94(1), 142-163. https://doi.org/10.1002/sce.20348
  17. Hestenes, D. (2006). Notes for a modelling theory of science, cognition and instruction. In E. Berg, T. Ellermeijer, and O. Slooten (Eds.) Proceedings GIREP Conference 2006; Modelling in physics and physics education (pp. 34-65). Amsterdam: University of Amsterdam.
  18. Hestenes, D. (2010). Modeling theory for math and science education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp.13-42). NY: Springer.
  19. Hokayem, H., & Schwarz, C. (2014). Engaging fifth graders in scientific modeling to learn about evaporation and condensation. International Journal of Science and Mathematics Education, 12(1), 49-72. https://doi.org/10.1007/s10763-012-9395-3
  20. Kang, E., Kim, C., Choe, S., Yoo, J., Park, H., Lee, S., & Kim, H. (2012). Small group interaction and norms in the process of constructing a model for blood flow in the heart. Journal of The Korean Association For Science Education, 32(2), 372-387. https://doi.org/10.14697/jkase.2012.32.2.372
  21. Kim, D., & Son, W. (2005). A study on building school community based on learning community. The Journal of Curriculum Studies, 23(4), 131-155.
  22. Kim, S., Maeng, S., Cha, H., Kim, C., & Choe, S. (2013). The contents of practical knowledge realized in two science teachers' classes on social construction of scientific models. Journal of The Korean Association For Science Education, 33(4), 807-825. https://doi.org/10.14697/jkase.2013.33.4.807
  23. Lee, S., Kim, C., Choe, S., Yoo, J., Park, H., Kang, E., & Kim, H. (2012). Exploring the patterns of group model development about blood flow in the heart and reasoning process by small group interaction. Journal of the Korean Association for Research in Science Education, 32(8), 805-822. https://doi.org/10.14697/jkase.2012.32.5.805
  24. Lee, T. (2013). Cultural features of middle school students in small group inquiry practices (Unpublished master thesis). Seoul National University, Seoul.
  25. Mendonça, P. C. C., & Justi, R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479-503. https://doi.org/10.1007/s11165-010-9176-3
  26. Mendonça, P. C. C., & Justi, R. (2014). An instrument for analyzing arguments produced in modeling-based chemistry lessons. Journal of Research in Science Teaching, 51(2), 192-218. https://doi.org/10.1002/tea.21133
  27. Oh, P., & Kim, C. (2005). A theoretical study on abduction as an inquiry method in Earth Science. Journal of the Korean Association for Research in Science Education, 25(5), 610-623.
  28. Oh, P., & Oh, S. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  29. Park, H., Kim, H., Jang, S., Shim, Y., Kim, C., Kim, H., Yoo, J., Choe, S., & Park, K. (2014). Characteristics of social interaction in scientific modeling instruction on combustion in middle school. Journal of the Korean Chemical Society, 58(4), 393-405. https://doi.org/10.5012/jkcs.2014.58.4.393
  30. Passmore, C., & Stewart, J. (2002). A modeling approach to teaching evolutionary biology in high schools. Journal of Research in Science teaching, 39(3), 185-204. https://doi.org/10.1002/tea.10020
  31. Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
  32. Rea-Ramirez, M. A. C., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement, & M. A. Rea-Ramirez (Eds.) Model based learning and instruction in science. (pp. 203-243). Springer.
  33. Schwarz, C. V. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744. https://doi.org/10.1002/sce.20324
  34. Schwarz, C. V., Reiser, B. J., Fortus, D., Krajcik, J., Roseman, J. E., Willard, T., & Acher, A. (2008). Designing and testing the MoDeLS learning progression. In annual conference of the National Association for Research in Teaching (NARST), Baltimore, MD.
  35. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D. Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learner. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  36. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  37. So, Y. (2006). A study on factors affecting effective instruction in the classroom. The Korea Journal of Educational Methodology Studies, 18(1), 1-22.
  38. Toulmin, S. (2003). The uses of argument. 1958. Cambridge: Cambridge UP.
  39. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
  40. Waight, N., Liu, X., Gregorius, R. M., Smith, E., & Park, M. (2014). Teacher conceptions and approaches associated with an immersive instructional implementation of computer-based models and assessment in a secondary chemistry classroom. International Journal of Science Education, 36(3), 467-505. https://doi.org/10.1080/09500693.2013.787506
  41. Yu, H., Ham, D., Cha, H., Kim, M., Kim, H., Yoo, J., Park, H., Kim, C., & Choe, S. (2012). Model creation and model developing process of science gifted students in scientific model constructing class for phase change of the moon. Journal of Gifted/Talented Education, 22(2), 265-290. https://doi.org/10.9722/JGTE.2012.22.2.265

Cited by

  1. Development and Application of Learning on Geological Field Trip Utilizing on Social Construction of Scientific Model vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.178
  2. 과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식 vol.37, pp.1, 2016, https://doi.org/10.14697/jkase.2017.37.1.0143
  3. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.539
  4. 볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용 vol.28, pp.5, 2016, https://doi.org/10.3807/kjop.2017.28.5.203
  5. 과학적 모형의 사회적 구성에서 스마트기기의 역할 모색 vol.37, pp.5, 2016, https://doi.org/10.14697/jkase.2017.37.5.813
  6. 블랙박스 시뮬레이션에 참여한 초등예비교사의 모형 구성의 특징과 인식적 기준 vol.38, pp.3, 2016, https://doi.org/10.14697/jkase.2018.38.3.305
  7. 소리의 전달 모형구성 수업에서 나타난 개인모형 구성 단계 중 정보의 흐름과 모둠모형 구성의 유형 vol.38, pp.3, 2016, https://doi.org/10.14697/jkase.2018.38.3.393
  8. 명시적-반성적 접근을 활용한 모델링 수업이 초등학생들의 메타모델링 지식에 미치는 영향 탐색 vol.40, pp.2, 2016, https://doi.org/10.14697/jkase.2020.40.2.127