• Title/Summary/Keyword: Model Based Segmentation

Search Result 623, Processing Time 0.024 seconds

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF

Saliency-Assisted Collaborative Learning Network for Road Scene Semantic Segmentation

  • Haifeng Sima;Yushuang Xu;Minmin Du;Meng Gao;Jing Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.861-880
    • /
    • 2023
  • Semantic segmentation of road scene is the key technology of autonomous driving, and the improvement of convolutional neural network architecture promotes the improvement of model segmentation performance. The existing convolutional neural network has the simplification of learning knowledge and the complexity of the model. To address this issue, we proposed a road scene semantic segmentation algorithm based on multi-task collaborative learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is proposed to reduce model complexity. Secondly, a collaborative learning framework is proposed involved with saliency detection, and the joint loss function is defined using homoscedastic uncertainty to meet the new learning model. Experiments are conducted on the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, Compared to methods with excellent performance, the method proposed in this paper has significant advantages in the segmentation of fine targets and boundaries.

Implementation of 2D Snake Model-based Segmentation on Corpus Callosum

  • Shidaifat, Ala'a ddin Al;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1412-1417
    • /
    • 2014
  • The corpus callosum is the largest part of the brain, which is related to many neurological diseases. Snake model or active contour model is widely used in medical image processing field, especially image segmentation they look into the nearby edge, localizing them accurately. In this paper, corpus callosum segmentation using the snake model, is proposed. We tested a snake model on brain MRI. Then we compared the result with an active shape approach and found that snake model had better segmentation accuracy also faster than active shape approach.

IMAGE SEGMENTATION BASED ON THE STATISTICAL VARIATIONAL FORMULATION USING THE LOCAL REGION INFORMATION

  • Park, Sung Ha;Lee, Chang-Ock;Hahn, Jooyoung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.129-142
    • /
    • 2014
  • We propose a variational segmentation model based on statistical information of intensities in an image. The model consists of both a local region-based energy and a global region-based energy in order to handle misclassification which happens in a typical statistical variational model with an assumption that an image is a mixture of two Gaussian distributions. We find local ambiguous regions where misclassification might happen due to a small difference between two Gaussian distributions. Based on statistical information restricted to the local ambiguous regions, we design a local region-based energy in order to reduce the misclassification. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed variational model.

A Study on HMM-Based Segmentation Method for Traffic Monitoring (HMM 분할에 기반한 교통모니터링에 관한 연구)

  • Hwang, Suen-Ki;Kang, Yong-Seok;Kim, Tae-Woo;Kim, Hyun-Yul;Park, Young-Cheol;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, we propose a HMM(Hidden Markov Model)-based segmentation method to model shadows as well as foreground and background regions. The shadow of moving objects often keeps from visual tracking. We propose an HMM-based segmentation method which classifies each object in real time. In the case of traffic monitoring movies, the effectiveness of the proposed method was proved by experiments.

Performance improvement of text-dependent speaker verification system using blind speech segmentation and energy weight (Blind speech segmentation과 에너지 가중치를 이용한 문장 종속형 화자인식기의 성능 향상)

  • Kim Jung-Gon;Kim Hyung Soon
    • MALSORI
    • /
    • no.47
    • /
    • pp.131-140
    • /
    • 2003
  • We propose a new method of generating client models for HMM based text-dependent speaker verification system with only a small amount of training data. To make a client model, statistical methods such as segmental K-means algorithm are widely used, but they do not guarantee the quality or reliability of a model when only limited data are avaliable. In this paper, we propose a blind speech segmentation based on level building DTW algorithm as an alternative method to make a client model with limited data. In addition, considering the fact that voiced sounds have much more speaker-specific information than unvoiced sounds and energy of the former is higher than that of the latter, we also propose a new score evaluation method using the observation probability raised to the power of weighting factor estimated from the normalized log energy. Our experiment shows that the proposed methods are superior to conventional HMM based speaker verification system.

  • PDF

Railroad Surface Defect Segmentation Using a Modified Fully Convolutional Network

  • Kim, Hyeonho;Lee, Suchul;Han, Seokmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4763-4775
    • /
    • 2020
  • This research aims to develop a deep learning-based method that automatically detects and segments the defects on railroad surfaces to reduce the cost of visual inspection of the railroad. We developed our segmentation model by modifying a fully convolutional network model [1], a well-known segmentation model used for machine learning, to detect and segment railroad surface defects. The data used in this research are images of the railroad surface with one or more defect regions. Railroad images were cropped to a suitable size, considering the long height and relatively narrow width of the images. They were also normalized based on the variance and mean of the data images. Using these images, the suggested model was trained to segment the defect regions. The proposed method showed promising results in the segmentation of defects. We consider that the proposed method can facilitate decision-making about railroad maintenance, and potentially be applied for other analyses.

Deep Learning-Based Lumen and Vessel Segmentation of Intravascular Ultrasound Images in Coronary Artery Disease

  • Gyu-Jun Jeong;Gaeun Lee;June-Goo Lee;Soo-Jin Kang
    • Korean Circulation Journal
    • /
    • v.54 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery morphology is based on the lumen and vessel segmentation. This study aimed to develop an automatic segmentation algorithm and validate the performances for measuring quantitative IVUS parameters. Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized for the automatic segmentation of IVUS images. Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there were close correlations between model-derived vs. experts-measured IVUS parameters; minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen area was similarly excellent compared to the experts' agreement. The model-based lumen and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average. Conclusions: The deep learning models can accurately and quickly delineate vascular geometry. The artificial intelligence-based methodology may support clinicians' decision-making by real-time application in the catheterization laboratory.

Acoustic Modeling and Energy-Based Postprocessing for Automatic Speech Segmentation (자동 음성 분할을 위한 음향 모델링 및 에너지 기반 후처리)

  • Park Hyeyoung;Kim Hyungsoon
    • MALSORI
    • /
    • no.43
    • /
    • pp.137-150
    • /
    • 2002
  • Speech segmentation at phoneme level is important for corpus-based text-to-speech synthesis. In this paper, we examine acoustic modeling methods to improve the performance of automatic speech segmentation system based on Hidden Markov Model (HMM). We compare monophone and triphone models, and evaluate several model training approaches. In addition, we employ an energy-based postprocessing scheme to make correction of frequent boundary location errors between silence and speech sounds. Experimental results show that our system provides 71.3% and 84.2% correct boundary locations given tolerance of 10 ms and 20 ms, respectively.

  • PDF