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AUTHOR'S SUMMARY

Deep learning algorithms allow automatic learning without explicit programming, 
potentially improving diagnostic accuracy. The Efficient-UNet showed good performance 
in delineating vascular geometry on the grayscale intravascular ultrasound image. This 
data-driven approach may support clinicians in evaluating coronary artery morphology and 
making clinical decisions during percutaneous coronary intervention.

ABSTRACT

Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery 
morphology is based on the lumen and vessel segmentation. This study aimed to develop an 
automatic segmentation algorithm and validate the performances for measuring quantitative 
IVUS parameters.
Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training 
and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the 
vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were 
labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized 
for the automatic segmentation of IVUS images.
Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 
0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a 
high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there 
were close correlations between model-derived vs. experts-measured IVUS parameters; 
minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque 
volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen 
area was similarly excellent compared to the experts' agreement. The model-based lumen 
and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual 
segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average.
Conclusions: The deep learning models can accurately and quickly delineate vascular 
geometry. The artificial intelligence-based methodology may support clinicians’ decision-
making by real-time application in the catheterization laboratory.
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INTRODUCTION

Intravascular ultrasound (IVUS) is a useful tool for planning percutaneous coronary 
intervention (PCI) as it provides information to the operators on lesion severity, plaque 
characteristics, reference vessel size, and lesion length. By using validated imaging 
criteria, IVUS has been used for clinical decision-making and PCI optimization through 
the correction of stent under-expansion and edge problems and prevention of procedural 
complications to eventually prevent stent failure, such as stent thrombosis and restenosis.1-3) 
Cross-sectional and volumetric measurements of the lumen and external elastic membrane 
(EEM) as well as the plaque plus media thickness between those two structures are used to 
evaluate vessel geometry. Device sizing or stent optimization depends on the geometrical 
assessment of the stenotic segment. About the natural history of coronary atherosclerosis, 
the plaque burden, tissue composition, and vascular remodeling constitute essential 
predictors of the risk of adverse cardiac events.4) Meticulous segmentation of IVUS images 
is crucial in assessing vessel geometry, including the area and diameter, in quantifying 
atheroma and defining the region of interest (ROI) for plaque characterization. A single IVUS 
pullback contains thousands of images; therefore, the manual segmentation of the lumen 
and frame-by-frame measurement of the EEM constitutes a time-consuming and error-prone 
task. Moreover, the traditional IVUS criteria usually measured within one selected frame 
may be insufficient to reflect the status of an entire vascular segment. Therefore, a rapid, 
accurate algorithm for automatic segmentation of the whole sequence of pullback images 
is needed to facilitate the on-site utilization of IVUS and real-time decision-making in the 
catheterization laboratory.

Recently, convolutional neural networks (CNNs) have been adopted in many computer vision 
applications for lesion detection and semantic segmentation in various domains. A few 
studies have demonstrated the good performance of deep learning algorithms to delineate 
the lumen and vessel of coronary arteries; however, those studies comprised models that 
were developed using images from a small number of cases and cannot be applied to the 
general population with diverse lesion characteristics.5-7) Furthermore, the agreement of the 
model-derived cross-sectional and volumetric measurements with expert analysis has not 
been validated adequately. Thus, this study was conducted to develop a CNN-based automatic 
segmentation algorithm and to evaluate the performance of the algorithm for the calculation 
of quantitative IVUS parameters in patients with coronary artery disease.

METHODS

Ethical statement
The protocol for this retrospective data analysis was approved by the Institutional Review 
Board of Asan Medical Center (2016-1281), and the requirement of written informed consent 
from the participants was waived.

Study population
Between November 2012 and July 2015, 1,357 patients underwent pre-procedural IVUS to 
assess for coronary stenosis with angiographic diameter stenosis >40% on visual estimation 
at Asan Medical Center, Seoul, Republic of Korea. In patients with IVUS pullbacks of 2 or 
more vessels, the vessel with the most severe stenosis was selected. After excluding 228 
cases with stented lesions, 47 cases with chronic total occlusion, 14 cases with poor imaging 
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quality due to severe non-uniform deformity or air bubble artifact, and 5 cases with technical 
errors in the imaging files, a final cohort of 1,063 coronary arteries was included in this 
retrospective analysis. The patients were randomly assigned (4:1) to the training and test sets. 
The independent data set of 111 IVUS pullbacks obtained between January and March 2016 
was also used to assess the vessel-level performance.

Acquisition of intravascular ultrasound
After intracoronary administration of 0.2 mg nitroglycerin, grayscale IVUS imaging was 
performed using a motorized transducer pullback (0.5 mm/s) and a commercial scanner 
(Boston Scientific/SCIMED, Minneapolis, MN, USA) consisting of a rotating 40-MHz 
transducer within a 3.2-F imaging sheath. An ROI was defined as the segment from the 
ostium to a point located 10 mm distal to the lesion (maximal plaque thickness >0.5 mm).

Model development
The experienced user manually labeled the lumen and vessel boundaries in every IVUS 
frame with a 0.2 mm interval (approximately every 12th frame). Lumen segmentation was 
undertaken based on the interface between the lumen and the leading edge of the intima. 
A discrete interface at the border between the media and the adventitia corresponded 
approximately to the location of the EEM.

The overall workflow of model development is shown in Figure 1. The proposed method 
comprised three steps: First, we decomposed an IVUS image into multiple 2-dimensional 
(2D) segmentations of frames. For 2D segmentation, the fully convolutional network 
(FCN) with pre-trained weights from EfficientNet trained on an ImageNet database was 
used (Supplementary Appendix). The skip connections to the model that combined the 
hierarchical features from the convolutional layers with the different scales were applied. 
The neural network model, which we named Efficient-UNet, was utilized for developing the 
proposed segmentation method (Supplementary Figure 1). Among the various subtypes 
demarcated based on the complexity of EfficientNet (B0–B7), the EfficientNet-B2 layer was 
applied because of the inference time and performance. Supplementary Table 1 shows the 
encoding layer performance of the proposed network. After leveraging the data generated in 
consecutive frames, the five displacement values of 0, 1, 2, 3, and 4 frames were applied. Five 
extracted masks were fused to generate one result mask using the Ensemble.

Using a mini-batch size of 8 images, the Adam optimizer for 100 epochs was applied with an 
initial learning rate of 0.0001. Due to multiple classes’ nature, cross-entropy was used as a 
loss function. The detailed methods of implementation details, data augmentation, and pre-
and post-processing are described in the Supplementary Appendix.

Cross-sectional images were segmented into three compartments: 1) the adventitia, 
including the pixels outside the EEM (coded as “0”); 2) the lumen, including the pixels 
within the lumen border (coded as “1”); and 3) the plaque, including the pixels between the 
lumen border and EEM (coded as “2”). To calibrate the pixel dimensions, grid lines were 
automatically applied in the IVUS images, and the pixel spacing was calculated for extracting 
the IVUS parameters.

To assess the extent of overlap and distance between the model-predicted vs. human-measured 
lumen and the frame-level EEM areas, five metrics—the dice similarity coefficient (DSC), 
Jaccard index (JI), surface DSC, mean surface distance, and Hausdorff Distance—were derived.
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To compare the model’s (vs. experts) performance in the independent dataset that included 
the 111 IVUS pullback, the manual segmentation and IVUS measurement were undertaken 
with the offline software (Echoplaque 3.0; Indec Systems, Mountain View, CA, USA).

Statistical analysis
All values are expressed as mean±1 standard deviation (continuous variables) or count and 
percentage (categorical variables). Continuous variables are compared using unpaired t-tests, 
and categorical variables are compared using χ2 statistics. A p value <0.05 was considered 
statistically significant. Between the ground truth and predicted values, Bland-Altman was 
used to evaluate the agreement, and Pearson product-moment correlation was used to assess 
the linear correlation. Statistical analyses of the patient and lesion characteristics at baseline 
were performed using SPSS (version 10.0; SPSS Inc., Chicago, IL, USA).
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Figure 1. Workflow for developing the Efficient-UNet for IVUS segmentation. 
IVUS = intravascular ultrasound.



RESULTS

Clinical and lesion characteristics
In the study cohort, the mean age was 64.0±9.6 years, and 76% were men. The target vessels 
were the left anterior descending artery in 75%, the left circumflex artery in 3%, the right 
coronary artery in 19%, the ramus intermedius in 2%, and the left main coronary artery in 
1% of the cohort. The incidences of diabetes mellitus, hypertension, and hyperlipidemia were 
33%, 54%, and 31%, respectively.

Frame-level performance of the model
Based on the evaluation metrics, the baseline model performance for lumen and EEM 
segmentation has been summarized in Table 1. For lumen segmentation, Efficient-UNet 
(vs. DeepLabv3Plus vs. RefineNet vs. UNet) showed a higher DSC (0.93±0.05 vs. 0.91±0.06 
vs. 0.89±0.11 vs. 0.92±0.05) and JI (0.87±0.08 vs. 0.85±0.09 vs. 0.82±0.14 vs. 0.86±0.09) 
and demonstrated better DSC (0.97±0.03 vs. 0.95±0.05 vs. 0.95±0.06 vs. 0.96±0.04) and JI 
(0.94±0.04 vs. 0.91±0.08 vs. 0.91±0.09 vs. 0.92±0.07) for EEM segmentation. Table 2  
summarizes the evaluation metrics of EfficientNet-B2 with different input channels. 
The ensemble of the five models for displacement in consecutive frames shows the best 
performance for lumen (DSC, 0.94±0.04) and EEM (DSC, 0.97±0.02) segmentation.

Vessel-level performance of the model
The vessel-level performances were tested in the independent test set that included 111 IVUS 
pullbacks with lesion lengths of 32.0±14.1 mm (including 64.0±28.2 frames). Table 3 presents 
a comparison of the Efficient-UNet- vs. expert-measured vessel-level IVUS parameters. 
Table 4 shows the correlations between the proposed model-derived and expert-measured 
IVUS parameters per vessel. Figure 2 shows the Bland-Altman plots between the proposed 
model-derived and expert-measured minimal lumen area. The correlation between the 
proposed model-derived and expert-measured minimal lumen area is shown in Figure 3. 
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Table 1. Performance of IVUS segmentation models in the test set

Model
Lumen EEM

DSC JI SDSC MSD (mm) HD (mm) DSC JI SDSC MSD (mm) HD (mm)
Efficient-UNet (proposed model) 0.93±0.05 0.87±0.08 0.65±0.19 0.04±0.03 0.16±0.15 0.97±0.03 0.94±0.04 0.78±0.18 0.03±0.03 0.13±0.14
DeepLabv3Plus (xception) 0.91±0.06 0.85±0.09 0.59±0.20 0.08±0.12 0.40±0.67 0.95±0.05 0.91±0.08 0.73±0.19 0.08±0.12 0.42±0.66
4-cascaded RefineNet (resnet101) 0.89±0.11 0.82±0.14 0.56±0.24 0.06±0.05 0.20±0.16 0.95±0.06 0.91±0.09 0.74±0.21 0.05±0.08 0.24±0.31
UNet 0.92±0.05 0.86±0.09 0.63±0.19 0.07±0.08 0.39±0.62 0.96±0.04 0.92±0.07 0.74±0.19 0.08±0.11 0.43±0.61
Values are shown as mean±standard deviations.
DSC = dice similarity coefficient; EEM = external elastic membrane; HD = Hausdorff distance; IVUS = intravascular ultrasound; JI = Jaccard index; MSD = mean 
surface distance; SDSC = surface dice similarity coefficient.

Table 2. Performance of EfficientNet-B2 with different input channels in the test set

No of displacement 
consecutive frames

Lumen EEM
DSC JI SDSC MSD (mm) HD (mm) DSC JI SDSC MSD (mm) HD (mm)

0 0.93±0.05 0.86±0.08 0.62±0.19 0.08±0.10 0.50±0.79 0.97±0.03 0.93±0.05 0.76±0.18 0.06±0.08 0.42±0.69
1 0.93±0.05 0.87±0.08 0.65±0.19 0.04±0.03 0.16±0.15 0.97±0.03 0.94±0.04 0.78±0.18 0.03±0.03 0.13±0.14
2 0.93±0.05 0.87±0.08 0.64±0.20 0.06±0.06 0.48±0.77 0.96±0.04 0.93±0.07 0.75±0.20 0.06±0.11 0.42±0.68
3 0.93±0.05 0.87±0.08 0.64±0.21 0.05±0.04 0.45±0.73 0.97±0.03 0.94±0.05 0.77±0.18 0.04±0.04 0.37±0.62
4 0.93±0.05 0.87±0.08 0.65±0.19 0.04±0.04 0.17±0.24 0.96±0.03 0.93±0.05 0.76±0.19 0.04±0.07 0.19±0.31
Ensemble* 0.94±0.04 0.89±0.06 0.76±0.19 0.04±0.06 0.18±0.27 0.97±0.02 0.94±0.04 0.82±0.16 0.03±0.03 0.13±0.17
Values are shown as mean±standard deviations.
DSC = dice similarity coefficient; EEM = external elastic membrane; HD = Hausdorff distance; JI = Jaccard index; MSD = mean surface distance; SDSC = surface 
dice similarity coefficient.
*Ensemble of the five models for displacement consecutive frames.



The agreement between model-derived vs. expert-measured minimal lumen area within 
the lesion was similarly excellent compared to the experts' agreement. The cross-sectional 
and volumetric IVUS measurements derived from the model vs. experts were compared 
in Supplementary Figures 2 and 3. The intra- and interobserver variations in the core 
laboratory analysis are summarized in Supplementary Table 2. Their limits of agreement 
(LOA) are shown in Supplementary Table 3. The interobserver variations are demonstrated in 
Supplementary Figures 4 and 5, and their LOA were included in Supplementary Table 4.

The inference time of the lumen and EEM segmentation by Efficient-UNet was 0.132 seconds 
per section. The model-based lumen and EEM segmentation for a 20-mm lesion segment 
required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert 
took 187.5 minutes on average.

DISCUSSION

Quantitative IVUS measurements are based on the lumen and vessel segmentation and 
provide useful information on the coronary artery morphology to support interventionists 
in clinical decision-making. Given the lack of digital solutions for accurately identifying the 
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Table 3. Vessel-level comparison of the proposed model-derived vs. expert-measured IVUS parameters
IVUS parameters Efficient-UNet Expert 1 Expert 2
Within lesion segment

Minimal lumen area (mm2) 2.7±1.0 2.5±1.1 2.6±1.0
EEM at the MLA site (mm2) 13.1±4.5 13.1±4.9 12.6±4.8*

Plaque burden at the MLA site (%) 78.4±7.1 78.8±9.1 77.2±9.6
Mean lumen diameter (mm) 1.8±0.3 1.8±0.3 1.8±0.3
Lumen volume (mm3) 189.6±91.1 179.4±85.1 174.9±83.8
EEM volume (mm3) 488.2±241.0 464.1±224.8 443.3±214.3
Plaque volume (mm3) 298.6±163.6 285.7±150.2 268.3±140.6

Proximal reference 5-mm segment
Minimal lumen area (mm2) 8.9±2.5 9.7±2.8 9.3±2.7
EEM at the MLA site (mm2) 17.9±4.9 18.2±5.1 17.5±4.8
Plaque burden at the MLA site (%) 50.0±8.6 46.3±9.1 46.3±8.5
Mean lumen diameter (mm) 3.3±0.5 3.5±0.5 3.4±0.5

Distal reference 5-mm segment
Minimal lumen area (mm2) 5.5±2.1 5.7±2.3 5.5±2.2
EEM at the MLA site (mm2) 11.4±4.4 10.3±4.1 9.9±3.8
Plaque burden at the MLA site (%) 49.9±12.6 43.6±11.1* 43.5±10.5*

Mean lumen diameter (mm) 2.6±0.5 2.6±0.5 2.6±0.5
EEM = external elastic membrane; IVUS = intravascular ultrasound; MLA = minimum luminal area.
*p values <0.05 (vs. model).

Table 4. Correlations between Efficient-UNet-derived and expert-measured IVUS parameters per vessel

IVUS parameters
Correlation coefficient†

vs. Expert 1* vs. Expert 2*

Within lesion segment
Minimal lumen area (mm2) 0.92 0.93
EEM at the MLA site (mm2) 0.88 0.87
Plaque burden at the MLA site (%) 0.86 0.85
Mean lumen diameter (mm) 0.92 0.93
Lumen volume (mm3) 0.99 0.99
EEM volume (mm3) 0.99 0.99
Plaque volume (mm3) 0.95 0.96

EEM = external elastic membrane; IVUS = intravascular ultrasound; MLA = minimum luminal area.
*All p values <0.001; †Pearson product-moment correlation coefficient for assessing the linear correlation.



vascular geometry, IVUS analysis has been conducted by experts who manually annotate the 
lumen and EEM borders. However, this approach has many pitfalls, including high intra- and 
interobserver variabilities. Although every 60th (1-mm interval) or 30th (0.5-mm interval) 
image is selected and segmented manually, volumetric analysis in a whole pullback usually 
takes several hours. As frame-by-frame manual annotations of the entire IVUS pullback are 
laborious and time-consuming, the on-site intraprocedural IVUS assessment procedure 
depends on a quick analysis that involves only a few sections.

In interventional cardiology, there is an unmet need for automated IVUS analysis. However, 
IVUS segmentation programs have not been employed widely in real-world clinical practice, 
possibly due to the poor performance and limited availability of such programs. There are 
many challenges of IVUS images, including common artifacts (e.g., guide-wire artifacts, non-
uniform rotational distortion, motion artifacts, reverberations, side lobe artifacts, and blood-
speckle artifacts). Especially in attenuated or calcified plaques with acoustic shadowing, 
stented segments, and bifurcation sites, delineating the EEM border with a consistent 
criterion may prove challenging.

A large number of IVUS segmentation methodologies that incorporate edge-tracking and 
gradient-based techniques,8) snake models,9) or probabilistic-based approaches10) have been 
studied; however, the performance of the abovementioned techniques for detecting EEM and 
lumen borders was suboptimal. CNNs have been designed to automatically and adaptively 
ascertain the spatial hierarchies of features through backpropagation. This data-driven 
approach can be utilized in medical imaging to develop various predictive models. Recently, 

36

Deep-Learning-Based IVUS Segmentation

https://doi.org/10.4070/kcj.2023.0166https://e-kcj.org

1.0

0.5

0

−1.0

−0.5

1.5

1.0

0.5

0

−1.0

−0.5

−1.5

2 5 74 6

Mean of minimal lumen area

1 3

Di
ffe

re
nc

e 
be

tw
ee

n
ex

pe
rt

 1 
an

d 
ex

pe
rt

 2

1.5

1.0

0.5

0

−1.0

−1.5

−0.5

3 5 76

Mean of minimal lumen area

2 4

Di
ffe

re
nc

e 
be

tw
ee

n
m

od
el

 a
nd

 e
xp

er
t 1

3 65 7

Mean of minimal lumen area

2 4

Di
ffe

re
nc

e 
be

tw
ee

n
m

od
el

 a
nd

 e
xp

er
t 2

Figure 2. Bland-Altman between the proposed model-derived and expert-measured minimal lumen area.
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Figure 3. Correlation between the proposed model-derived and expert-measured minimal lumen area.



CNNs have been adopted in many computer vision applications, including lesion detection 
and semantic segmentation. The performance of deep learning models for automatic 
IVUS segmentation has since increased. The previous approaches were based on a U-Net 
architecture that comprised encoder and decoder schemes. Yang et al.11) demonstrated 
that an FCN called Dual Path U-Net outperformed conventional computer vision-based 
approaches for segmenting the lumen and EEM.

Based on the rapid evolution of the algorithm, the encoder component of U-Net has been 
changed. Nishi et al.12) developed the IVUS segmentation model by applying DeepLabv3. 
The DSCs of the model were 0.83 in overall and 0.92 in native coronary arteries. From an 
engineering point of view, our current model using both U-Net and Efficient-Net showed 
better DSCs (0.93±0.05 and 0.97±0.03 for lumen and EEM segmentation, respectively). 
Moreover, we compared the diagnostic accuracies among Efficient-UNet vs. various algorithms 
(Table 1). In the clinical aspect, the previous study was focused on the matrices-based 
evaluation only at the frame level, while our current study validated both frame- and vessel-
level performance. We tested the cross-sectional and volumetric parameters generally used 
in actual practice for evaluating lesion severity and prognostic implication and determining 
treatment strategy. Although there is a concern about the poor reproducibility of IVUS 
measurement potentially affecting the quality of data labeling, the degree of interobserver 
variance was not considerable in this study. We also validated the excellent agreement between 
the model-derived vs. the expert-measured IVUS parameters by meticulous core laboratory 
analysis. The quick and accurate segmentation of IVUS images can save time and expenses for 
manual contouring and reduce the clinicians’ workload. By eliminating the effect of human 
subjectivity or uncertainty of interpretation, this data-driven approach will be helpful for the 
effective diagnosis of coronary atherosclerosis and clinical decision-making.

Nonetheless, there are some limitations of this study. First, the cases with poor image quality 
from severe non-uniform rotational deformity or air bubble artifacts were excluded from this 
analysis. Model performance might decrease in non-selected cases in real-world practice 
without an expert preview. Second, our models developed using 40-Mhz IVUS images cannot 
be extrapolated to those obtained by 20- or 60-MHz IVUS. As another pitfall, this current 
study does not include external validation. The performance of the models needs to be 
validated in a multicenter cohort. As this analysis included only native coronary arteries, the 
models should be tuned for segmenting stented lesions. The models’ ability to delineate the 
neointimal border should be tested to evaluate the lesions with in-stent restenosis. More 
cases with intimal dissection, intraluminal thrombus, and nodular calcification should 
be included for model training to improve the segmentation performance. To assess the 
complex bifurcation lesions, the establishment of expert consensus for the lumen and EEM 
segmentation of side branches is a prerequisite for labeling the training data.

In conclusion, the deep learning models performed well in the lumen and EEM segmentation 
at both frame and vessel levels. This artificial intelligence-based methodology can accurately 
and quickly delineate vascular geometry and has considerable potential for real-time 
application in the catheterization laboratory.
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