Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
Smart Structures and Systems
/
v.23
no.3
/
pp.279-293
/
2019
To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.
Students' learning processes and mathematical levels should be correctly diagnosed in many different methods of assessment to help students learn mathematics. The study developed the model for the process-based assessment while using manipulatives in the middle school in order to improve problem solving, reasoning and communication which are emphasized in 2009 reformed curriculum as the areas of mathematical process. Identifying the principles of assessment, we created the assessment model for each area and carried out a preliminary study. Based on this, we revised the representative items and the observation checklist and then conducted a main study. Through the results of assessment, we found that students' thinking processes were well presented in scoring rubric for their responses on each item. It meant that the purpose of the assessment as a criterion-referenced test was achieved.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.2
/
pp.311-326
/
2024
The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.
In the case of object detection using deep learning, both accuracy and real-time are required. However, it is difficult to use a deep learning model that processes a large amount of data in a limited resource environment. To solve this problem, this paper proposes an object detection model for small embedded devices. Unlike the general detection model, the model size was minimized by using a structure in which the pre-trained feature extractor was removed. The structure of the model was designed by repeatedly stacking lightweight convolution blocks. In addition, the number of region proposals is greatly reduced to reduce detection overhead. The proposed model was trained and evaluated using the public dataset PASCAL VOC. For quantitative evaluation of the model, detection performance was measured with average precision used in the detection field. And the detection speed was measured in a Raspberry Pi similar to an actual embedded device. Through the experiment, we achieved improved accuracy and faster reasoning speed compared to the existing detection method.
The purpose of this paper is to apply the newly developed SICAT teaching and learning model to the actual scene of teaching and learning and draw a point of discussion for utilizing teaching and learning model, by uncovering the satisfaction of students and the inhibiting/facilitating elements when using the model. SICAT(Scientific Inquiry and Creative Activity with Technology; from here on SICAT), a teaching and learning model custom-built for engineering education, was developed, as more and more people paid attention to the demand for creative engineers. It was developed from the basis of PBL(Problem Based Learning), includes three sub-types which can be applied to the actual theory, design, and experimentation fields within engineering education. The three sub-types, which are ARDA(Analysis-Reasoning Activity & Discussion-Argumentation Activity), CoCD (Collaboration Activity & Capstone Design Activity), and ReSh(Reflection Activity & Sharing Activity), respectively support deductive and argumentation activities, creative design and collaboration activities, and retrospection and sharing activities. However, no research has been conducted to investigate whether or not there are inhibiting or facilitating elements in the application procedure, or what the rate of satisfaction for students is, when applying the SICAT model, which was newly developed to innovate existing engineering education, to the actual site of teaching and learning. Therefore, this research applied three types of SICAT teaching and learning models to the theory, design, and experimentation classes at the department of materials science and engineering at Hanyang University for eight weeks. After application, the students, teachers and tutors were surveyed and interviewed, and then the results analyzed in order to uncover inhibiting/facilitating elements and the rate of satisfaction. The satisfaction rate of students from the SICAT teaching and learning model was 3.78(in a perfect score of 5: The A type-3.65, The C type-3.80, The R type-3.90), and inhibiting/facilitating elements were drawn from the aspects of learning activities, support system. In conclusion, they can be contributed for implications of SICAT teaching and learning model universal use at engineering education in University.
Journal of the Korea Society of Computer and Information
/
v.15
no.1
/
pp.31-42
/
2010
GPM(Generic Product Model) developed by Hitachi in Japan is a common data model to integrate and share life cycle data of nuclear power plants. GPM consists of GPM core model, an abstract model, implementation language for the model and reference library written in the language. GPM core model has a feature that it can construct a semantic network model consisting of relationships among objects. Initial GPM developed and provided GPML as an implementation language to support the feature of the core model, but afterwards the GPML was replaced by GPM-XML based on XML to achieve data interoperability with heterogeneous applications accessing a GPM data model. However, data models written in GPM-XML are insufficient to be used as a semantic network model for lack of studies which support GPM-XML and enable the models to be used as a semantic network model. This paper proposes OWL as the implementation language for GPM core model because OWL can describe ontologies similar to semantic network models and has an abundant supply of technical standards and supporting tools. Also, OWL which can be expressed in terms of RDF/XML based on XML guarantees data interoperability. This paper uses OWL DL, one of three sublanguages of OWL, because it can guarantee complete reasoning and the maximum expressiveness at the same time. The contents of this paper introduce the way how to overcome the difference between GPM and OWL DL, and, base on this way, describe how to convert the reference library written in GPML into ontologies based on OWL DL written in RDF/XML.
Journal of Institute of Control, Robotics and Systems
/
v.3
no.2
/
pp.204-213
/
1997
In this paper, an application of fuzzy-neuron reasoning to the control of an activated sludge plant is presented. The activated sludge process is widely used in modern wastewater treatment plants. The operation control of the activated sludge process, however, is difficult due to the following reasons : 1)The complexity of the wastewater components, 2)the change of the wastewater influent, and 3)the adjustment errors in the control process. Because of these reasons, it is difficult to obtain mathematical model that really reflect the relationship between the variables and parameters in the process of wastewater treatment correctively and effectively. In this paper, the activated sludge process(A.S.P.) is modeled by a new fuzzy-neuron network representing nonlinear characteristics. These fuzzy-neurons have fuzzy rules with complementary membership function. Based on the constructed model, graphic simulator on X-window system as a graphic integrated environment is implemented. The efficacy of the proposed control scheme was evaluated and demonstrated by means of the field test.
소프트웨어 개발노력 추정에 대한 연구는 소프트웨어가 복잡해지고 범위가 크게 증가함에 따라서 그 중은 지속적으로 부각되고 있다. 관련 프로젝트를 발주하는 업체나, 이를 수주하고 개발을 진행하는 업체에게 원가를 고려하는 측면에서 매우 중요한 부분을 차지하고 있다. 이러한 개발노력 추정을 위하여 다양한 접근 방식들이 고려되어지고 있는데, 그중에서 많이 활용되어지고 있는 방식은 소프트웨어 규모에 기반을 둔 LOC(Line Of Code) 기반 COCOMO (Constructive Cost Model) 모델이나 기능점수(Function Point)를 기반으로 한 회귀분석 모델, 인공지능(Artificial Intelligence)을 활용한 신경망(Neural Network) 모델, 사례분석기법 (CBR, Case Based Reasoning) 등이 있다. 이중에서 최근에 기능점수를 활용한 개발노력 추정에 관한 연구들이 활발히 진행되고 있으나 개발노력 추정에는 소프트웨어 규모의 척도인 기능점수 뿐만 아니라, 개발환경을 구성하는 여러 가지 측면에 대한 고려가 추가되어져야 한다. 이에 본 논문은 최신의 소프트웨어 개발 사례들에 대하여 기능점수 및 추가적인 개발환경 요소들을 면밀히 분석하고, 분석한 내용에 대해서 전문가들의 설문을 통한 빈도분석 및 로지스틱 회귀분석, 데이터마이닝 기법인 신경망 분석 등을 활용하여 개발노력 추정 모델을 구축함으로써, 소프트웨어 개발의 다양한 측면의 중요성을 강조하고, 정확한 추정의 방안을 제시 하고자 노력 하였다.
International journal of advanced smart convergence
/
v.13
no.2
/
pp.205-213
/
2024
This study uses a large language model (LLM) to identify Aristotle's rhetorical principles (ethos, pathos, and logos) in COVID-19 information on Naver Knowledge-iN, South Korea's leading question-and-answer community. The research analyzed the differences of these rhetorical elements in the most upvoted answers with random answers. A total of 193 answer pairs were randomly selected, with 135 pairs for training and 58 for testing. These answers were then coded in line with the rhetorical principles to refine GPT 3.5-based models. The models achieved F1 scores of .88 (ethos), .81 (pathos), and .69 (logos). Subsequent analysis of 128 new answer pairs revealed that logos, particularly factual information and logical reasoning, was more frequently used in the most upvoted answers than the random answers, whereas there were no differences in ethos and pathos between the answer groups. The results suggest that health information consumers value information including logos while ethos and pathos were not associated with consumers' preference for health information. By utilizing an LLM for the analysis of persuasive content, which has been typically conducted manually with much labor and time, this study not only demonstrates the feasibility of using an LLM for latent content but also contributes to expanding the horizon in the field of AI text extraction.
Korean Journal of Construction Engineering and Management
/
v.12
no.1
/
pp.53-61
/
2011
For construction projects, the importance of early cost estimates is highly recognized by the project team and sponsoring organization because early cost estimates are frequently a foundation of business decisions as well as a basis for identifying any changes as the project progresses from design to construction. However, it is difficult to accurately estimate construction cost in the early stage of a project due to various uncertainties in construction. To deal with these uncertainties, cost estimates should be made several times over the course of the project. In particular, early cost estimates are essential process for successful project management. For accurate construction cost estimates, it is necessary to compare cost estimates with actual costs based on historical project data. In this context, case-based reasoning (CBR), which is the process of solving new problems based on the solutions of similar past problems, can be considered as an effective method for cost estimating. To obtain this, it is also required to define the attribute similarities and the attribute weights. However, no existing method is capable of determining attribute weights of qualitative variables. Consequently, it has been a well-known barrier of accurate early cost estimates. Using Genetic Algorithms (GA), this research suggests the method of determining the attribute weight of qualitative variables. Based on building project case studies, the proposed methodology was validated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.