• Title/Summary/Keyword: Mode decouple

Search Result 20, Processing Time 0.023 seconds

Idle Vibration Development Procedure of 4WD SUV (SUV차량의 Idle 성능 개발)

  • 최승우;이남영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.120-124
    • /
    • 2003
  • NVH issue at idle condition is one of the major concerns of Passenger and Commercial Vehicle including Sports Utility Vehicle Especially steering wheel vibration at idle condition is a very complex problem and affected by firing frequency of the engine, stiffness of a steering wheel system and the body to which the steering wheel system is attached. To avoid vibration mode coupling between each system of a vehicle, experimental and analytical method has been used at the pre-prototype stage. The resonance frequency of the body and the frame has been decoupled by CAE and the resonance frequency of steering wheel system has been set in between the 1st bending frequency of body and frame. These Results has been used as design guidelines tot the prototype drawing stage. The experimental verification of tile modified pre-prototype vehicle shows good results of the vibration mode decouple. Modal test of prototype vehicle also confirms the vibration mode decouple between each system.

  • PDF

Multidisciplinary Design Optimization of Engine Mount with Considering Driveline (구동계를 고려한 엔진 마운트의 다분야 통합 최적설계)

  • 서명원;심문보;김문성;홍석길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

Two-Parameter Study on the Jet Regurgitant Mode of Resonant Tube

  • Chang, Se-Myong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.20-26
    • /
    • 2000
  • A conceptual simplified model of Hartmann-Sprenger tube is suggested and investigated to decouple the regurgitant mode in the present paper. In spite of high nonlinearity, the acoustic behavior of this resonant tube system is dependent on wavelength and depth of the tube. The effect of forcing frequency and tube geometry on jet regurgitant mode are studied and discussed. With a conventional axisymmetric Euler code, sensitive acoustic problems are solved and validated by comparison with analytic theories.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 설계민감도 해석과 위상 최적설계)

  • Ha Youn-Doh;Cho Seon-Ho;Jung Sang-Sub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Analysis of Stress Intensity Factors for Circular arc Cracks by Boundary Element Method (경계요소법에 의한 아크균열의 응력확대계수 해석)

  • 백열선;이장규;우창기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • In this paper, A circular arc crackered plate in biaxially stretched sheets was investigated in the boundary element method. The applications of fracture mechanics have traditionally concentrated on crack problems under an mode I, straight crack. However, many service failures occur from growth of cracks subjected to mixed mode loadings. A rectangular plate with arc crack or slanted central crack, under biaxial tensile loading, was treated analytically and also solved numerically. The Results from BEM applying different loading conditions, crack length (a/W), arc angle($\alpha$) are presented and discussed. The stress intensity factors are evaluated by the techniques of the J-integral. The decomposition method, used to decouple the stress intensity factors in mixed mode problems, is implemented by a considering a small circular contour path around each crack tip. The BIE method was successfully applied to a circular arc crackerd plate problem, also slanted centre cracked plate under mixed mode.

  • PDF

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Attitude Control of a Tethered Spacecraft

  • Cho, Sang-Bum;McClamroch, N. Harris
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.67-75
    • /
    • 2007
  • An attitude control problem for a tethered spacecraft is studied. The tethered spacecraft is viewed as a multi-body spacecraft consisting of a base body, a massless tether that connects the base body and an end mass, and tether actuator dynamics. Moments about the pitch and roll axes of the base spacecraft arise by control of the point of attachment of the tether to the base spacecraft. The control objective is to stabilize the attitude of the base spacecraft while keeping the perturbations of the tether small. Analysis shows that linear equations of motion for the tethered spacecraft are not completely controllable. We study two different control design approaches: (1) we decouple the attitude dynamics from the tether dynamics and we design a linear feedback to achieve stabilization of the attitude dynamics, and (2) we decouple the controllable modes from the uncontrollable mode using Kalman decomposition and we design a linear feedback to achieve stabilization of the controllable modes. Simulation results show that, although it is difficult to control the tether, the tether motion can be maintained within an acceptable range while stabilizing the attitude dynamics of the base spacecraft.

A study on identification of the damping ratio in a railway catenary system (철도 가선시스템의 감쇄 특성 파악에 관한 연구)

  • Park Sungyong;Jeon Byunguk;Lee Eungshin;Cho Yonghyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.529-533
    • /
    • 2005
  • A railway catenary system which supplies a train with electric power is an important system in determining the maximum speed of an electric train. However, a pantograph could be separated from a contact wire because of reciprocal action between a pantograph with constant upward force and a catenary system. The contact loss of a pantograph-catenary system is mainly affected by the dynamic characteristics of damping and wave propagation velocity of contact wire. For increasing speed of an electrical train, it is necessary to establish the techniques to identify the modal parameter of a catenary system through experiment. However, it is difficult to decouple each mode and to extract respect ive damping rat io since a catenary system has an extremely high modal density. For this reason, mode decoupling process to identify modal parameters is a principal technique in analyzing a catenary system. In this paper, the damping extract ion method for a catenary system using the continuous wavelet transform is discussed.

  • PDF

Robust Impedance Control Using Robot Using ISMC and Backstepping in Flexible Joint Robot (ISMC와 백스테핑을 이용한 유연관절로봇의 강인한 임피던스제어)

  • Kwon, Sung-Ha;Park, Seung-kyu;Kim, Min-chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.643-650
    • /
    • 2017
  • The control of flexible joint robot is getting more attentions because its applications are more frequently used for robot systems in these days. This paper proposes a robust impedance controller for the flexible joint robot by using integral sliding mode control and backstepping control. The sliding mode control decouple disturbances completely but requires matching condition for disturbances. The dynamic model of flexible joint robot is divided into motor side and link side and the disturbance of the link side does not satisfy matching condition and cannot be decoupled directly by the actual input in the motor side. To overcome this difficulty, backstepping control technique is used with sliding mode control. The mismatched disturbance in the link side is changed into matched one in the respect to virtual control input which is the state controlled by actual input in the motor side. Integral sliding mode control is used to preserve the impedance control performance and the improved robustness at the same time.

The Geometrical Analysis of Vibration Modes and Frequency Responses of an Elastically Suspended Optical Disc Drive (탄성적으로 지지된 광디스크 드라이버의 진동모드와 주파수 응답의 기하적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.362-369
    • /
    • 2000
  • Via screw theory, a vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as a twisting motion on a screw in a three dimensional space. In thi s paper, applying the conditions that can be used to diagonalize the stiffness matrix by a parallel axis congruence transformation, the vibration modes and frequency response of an elastically suspended optical disc drive have been analyzed. It is first shown that the system has one plane of symmetry, which enables one to decouple the complicated vibration modes into two sets of modes independent of each other. Having obtained the analytical solutions for the axes of vibrations, the frequency response for a given applied input force has been demonstrated. Most importantly, it has been explained that this research result could be used in the synthesis process of a linear vibration system in order to improve the frequency response.