• Title/Summary/Keyword: Mobile-Task Robot

Search Result 135, Processing Time 0.031 seconds

Remote Controlled Robot System using Real-Time Operating System (실시간 운영체제를 탑재한 원격 제어 로봇 시스템)

  • Lee, Tae-Hee;Cho, Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper presents a robot system that combines computer network and an autonomous mobile robot where RTOS is installed. We propose a wireless communication protocol, and also implement it on the RTOS of the robot system. Main controller of the robot processes the control program as a task type in the real-time operating system. Peripheral devices are driven by the device driver functions with the dependency of the hardware. Because the client and server program was implemented to support the multi-platforms by Java SDK and Java JMF, it is easy to analyze programs, maintain system, and correct the errors in the system. End-user can control a robot with a vision showing remote sight over the Internet in real time, and the robot is moved keeping away from the obstacles by itself and command of the server received from end-user at the local client.

Design and Implementation of Linux based Real-Time Kernel for Robot Control (로봇 제어용 리눅스 기반 실시간 커널의 설계 및 구현)

  • 노현창;고낙용;김태영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.414-414
    • /
    • 2000
  • This paper presents a method for building a real-time kernel of autonomous mobile robot control systems. Until now, most of robots have their own operation softwares dedicated only for their use. Sometimes, operation softwares were developed based on MS-DOS or other real -time kernel based on UNIX. However, MS-DOS has many restrictions for use as a robot operation system. Also, mix based real-time kernel has some Limitations for use with mobile robots. So, in this paper, we focus on building a real-time kernel based on Linux. The in this paper, the software modules of Task Management, Memory Management, Intertask Communication, and Synchronization are redesigned. To show the efficiency of the paper, it was applied to run Nomad Super Scout II avoiding obstacles detected by sonar sensor array.

  • PDF

Behavior leaning and evolution of collective autonomous mobile robots using reinforcement learning and distributed genetic algorithms (강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.56-64
    • /
    • 1997
  • In distributed autonomous robotic systems, each robot must behaves by itself according to the its states and environements, and if necessary, must cooperates with other orbots in order to carray out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforement learning having delayed reward ability and distributed genectic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the perfodrmance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper, we verify the effectiveness of the proposed method by applying it to cooperative search problem.

  • PDF

Rate Modulation Strategy for Behaviors of a Mobile Robot with Considering Control Stability (제어안정도를 고려한 이동로봇 행동단위의 가변 주기 제어)

  • Kim, Hong-Ryeol;Kim, Joo-Min;Kim, Dae-Won;Yang, Kwang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2362-2364
    • /
    • 2003
  • In this paper, behaviors performing controls of a mobile robots are designed based on the concept of closed-loop controls. A control architecture, in which the behaviors coordinate concurrently with one others to achieve a task is also proposed. In the control architecture, task manager allocates valid resources and configures the weight of the behavior outputs to achieve the task. For practical implementation, a rate modulation strategy based on RMS(Rate Modulation Strategy) is proposed for efficient resource allocations. The rate modulation strategy is performed with considering control stability. The efficiency of the proposed rate modulation strategy is validated through simulation tests.

  • PDF

Isotropic Configurations of Omnidirectional Mobile Robots with Three Caster Wheels

  • Kim, Sung-Bok;Lee, Jae-Young;Kim, Hyung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2066-2071
    • /
    • 2003
  • In this paper, we identify the isotropic configurations of an omnidirectional mobile robot with three caster wheels, depending on the selection of actuated joints. First, We obtain the kinematic model of a caster wheeled omnidirectional mobile robot(COMR) without matrix inversion. For a given task velocity, the instantaneous motion of each wheel is decomposed into two orthogonal instantaneous motions of the steering and the rotating joints. Second, with the characteristic length introduced, we derive the isotropy conditions of a COMR having $n({\ge}3)$ actuated joints, which are imposed on two Jacobian matrices, $A{\in}R^{n{\times}3}$ and $B{\in}R^{6{\times}6}$. Under the condition of $B{\propto}I_6$, three caster wheels should have identical structure with the length of the steering link equal to the radius of the wheel. Third, depending on the selection of actuated joints, we derive the conditions for $A^t$ $A{\propto}I_3$ and identify the isotropic configurations of a COMR. All possible actuation sets with different number of actuated joints and different combination of rotating and steering joins are considered.

  • PDF

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

A Robot Coverage Algorithm Integrated with SLAM for Unknown Environments (미지의 환경에서 동작하는 SLAM 기반의 로봇 커버리지 알고리즘)

  • Park, Jung-Kyu;Jeon, Heung-Seok;Noh, Sam-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • An autonomous robot must have a global workspace map in order to cover the complete workspace. However, most previous coverage algorithms assume that they have a grid workspace map that is to be covered before running the task. For this reason, most coverage algorithms can not be applied to complete coverage tasks in unknown environments. An autonomous robot has to build a workspace map by itself for complete coverage in unknown environments. Thus, we propose a new DmaxCoverage algorithm that allows a robot to carry out a complete coverage task in unknown environments. This algorithm integrates a SLAM algorithm for simultaneous workspace map building. Experimentally, we verify that DmaxCoverage algorithm is more efficient than previous algorithms.

A Study on the Distributed Real-time Mobile Robot System using TCP/IP and Linux (Linux와 TCP/IP를 이용한 분산 실시간 이동로봇 시스템 구현에 관한 연구)

  • 김주민;김홍렬;양광웅;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.789-797
    • /
    • 2003
  • An implementation scheme and some improvements are proposed to adopt public-licensed operating system, Linux and de-facto world-wide network standard, TCP/IP into the field of behavior-based autonomous mobile robots. To demonstrate the needs of scheme and the improvement, an analysis is performed on a server/client communication problem with real time Linux previously proposed, and another analysis is also performed on interactions among TCP/IP communications and the performance of Linux system using them. Implementation of behavior-based control architecture on real time Linux is proposed firstly. Revised task-scheduling schemes are proposed that can enhance the performance of server/client communication among local tasks on a Linux platform. A new method of TCP/IP packet flow handling is proposed that prioritizes TCP/IP software interrupts with aperiodic server mechanism as well. To evaluate the implementation scheme and the proposed improvements, performance enhancements are shown through some simulations.

Fuzzy Tracking Control Based on Stereo Images for Tracking of Moving Robot (이동 로봇 추적을 위한 스테레오 영상기반 퍼지 추적제어)

  • Min, Hyun-Hong;Yoo, Dong-Sang;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.198-204
    • /
    • 2012
  • Tracking and recognition of robots are required for the cooperation task of robots in various environments. In the paper, a tracking control system of moving robot using stereo image processing, code-book model and fuzzy controller is proposed. First, foreground and background images are separated by using code-book model method. A candidate region is selected based on the color information in the separated foreground image and real distance of the robot is estimated from matching process of depth image that is acquired through stereo image processing. The open and close processing of image are applied and labeling according to the size of mobile robot is used to recognize the moving robot effectively. A fuzzy tracking controller using distance information and mobile information by stereo image processing is designed for effective tracking according to the movement velocity of the target robot. The proposed fuzzy tracking control method is verified through tracking experiments of mobile robots with stereo camera.

Cooperative Multiple Robot Localization utilizing Correlation between GPS Data Errors (GPS 데이터 오차 간의 상관 관계를 활용한 군집 로봇의 위치 추정)

  • Jo, Kyoung-Hwan;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • It is essential to estimating positions of multiple robots in order to perform cooperative task in common workspace. Accordingly, we propose a new approach of cooperative localization for multiple robots utilizing correlation among GPS errors in common workspace. Assuming that GPS data of individual robot are correlated strongly as the distance among robots are close, it is confirmed that the proposed method provides improved localization accuracy. In addition, we define two operational parameters to apply proposed method in multiple robot system. With mentioned two parameters, we present a practical solution to accumulated position error in traveling long distance.

  • PDF