• 제목/요약/키워드: Mobile robot control

검색결과 1,462건 처리시간 0.026초

로커-보기 링크 구조를 갖는 전방향 이동로봇 시스템개발 (Development of Omni-Directional Mobile Robot System with Rocker-Bogie Link Structure)

  • 강택기;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.679-685
    • /
    • 2006
  • In this paper, development of an omni-directional mobile robot with rocker-bogie link structure is addressed. The overall mobile robot system consists of the robot mechanism with embedded control architecture, wireless communication with host graphic monitoring system, and the joy stick tole-controller. In the cluttered environment with various sizes of obstacles, the omni-directionality and the traversality are required for a mobile robot, so that the robot call go around or climb over the obstacles according to the size. The mobile robot mechanism developed in this paper has both of the omni-directionality and the traversality by 4 steerable driving wheels and the 2 additional passive omni-directional wheels linked with the rocker-bogie structure. The kinematic modeling for the mobile robot is described based on the well-known Sheth-Uicker convention and the instantaneous coordinate system.

차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어 (Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot)

  • 정우진;유광현
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

바퀴구동 이동로봇의 경로추적 직접적응제어 (Direct Adaptive Tracking Control For a Wheeled Mobile Robot)

  • 이용근
    • 전기학회논문지P
    • /
    • 제53권4호
    • /
    • pp.201-204
    • /
    • 2004
  • In this paper, a direct adaptive tracking controller based Lyapunov method is designed for a wheeled mobile robots. A wheeled mobile robots have three degrees of freedom and two control variables. Therefore, it is difficult to control a mobile robot using the general linear control. We introduce two kinds of Lyapunov function for the design of the controller and verify the controller. A mobile robots using the designed adaptive direct tracking controller is well-behaved and is easily implemented.

The running experiment of the wheel type mobile robot

  • Sugisaka, Masanori;Aito, Hisashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.520-520
    • /
    • 2000
  • In this paper, it used a soccer robot which needs the important Held of robot technology as the wheel type mobile robot. With the soccer robot, as for the especially important one, "strategy" "the orbit control of the robot", and "the efficiency of the robot" is given. Therefore, it paid attention to " the orbit control of the robot " and it controlled an orbit of the soccer robot using the PID control. the soccer robot using the PID control.

  • PDF

이동 로봇의 설계와 생산 (Design and manufacturing of a mobile robot)

  • 오세훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.971-974
    • /
    • 1992
  • The mobile robot may be composed of a robot and an AGV. In this paper, the ynamics of a robot part, such as reaction forces or required torques, are studied with assumption of the AGV in motion. These forces of a mobile robot are different from those of an industrial robot. A new robot is deigned and manufactured for the mobile robot.

  • PDF

높이 조절 및 하체 분리형 실내용 서비스 이동 로봇의 제작 및 제어 (Implementation and Control of an Extendable and Separable Mobile Robot Manipulator For Indoor Service)

  • 안재국;정슬
    • 전자공학회논문지SC
    • /
    • 제48권1호
    • /
    • pp.39-46
    • /
    • 2011
  • 본 논문은 실내에서 사용할 이동로봇의 구현과 제어에 대한 것이다. 로봇은 두 팔을 가지고 이동할 수 있는 베이스로 구성된다. 로봇은 디자인에 있어 및 가지 특정을 가진다. 첫 번째, 로봇의 허리는 높낮이 조절이 가능하다. 두 번째로 로봇은 접촉인 이동로봇 모드에서 2 점 접촉인 밸런싱 모드로 전환이 가능하다. 마지막으로 로봇은 상제와 하체의 분리 기능을 갖는다. 이동 베이스 부분은 청소작업에 사용이 가능하다.

격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어 (Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam)

  • 이근유;서진호;오명석;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

마커인식과 혼합 비주얼 서보잉 기법을 통한 이동로봇의 자세 안정화 제어 (Posture Stabilization Control for Mobile Robot using Marker Recognition and Hybrid Visual Servoing)

  • 이성구;권지욱;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1577-1585
    • /
    • 2011
  • This paper proposes a posture stabilization control algorithm for a wheeled mobile robot using hybrid visual servo control method with a position based and an image based visual servoing (PBVS and IBVS). To overcome chattering phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed hybrid visual servo control law introduces the fusion function based on a blending function. Then, the chattering problem and rapid motion of the mobile robot can be eliminated. Also, we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture stabilization control law using hybrid visual servoing is verified by a theoretical analysis and simulation and experimental results.

이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어 (Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot)

  • 박영준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

전방향 이동로봇 위치제어 알고리즘과 실험적 검증 (Position Control Algorithm and Experimental Evaluation of an Omni-directional Mobile Robot)

  • 주백석;조강익;성영휘
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.141-147
    • /
    • 2015
  • In this study, a position control algorithm for an omni-directional mobile robot based on Mecanum wheels was introduced and experimentally evaluated. Multiple ultrasonic sensors were installed around the mobile robot to obtain position feedback. Using the distance of the robot from the wall, the position and orientation of the mobile robot were calculated. In accordance with the omni-directional velocity generation mechanism, the velocity kinematics between the Mecanum wheel and the mobile platform were determined. Based on this formulation, a simple and intuitive position control algorithm was suggested. To evaluate the control algorithm, a test bed composed of artificial walls was designed and implemented. While conventional control algorithms based on normal wheels require additional path planning for two-dimensional planar motion, the omni-directional mobile robot using distance sensors was able to directly follow target positions with the simple proposed position feedback algorithm.