• Title/Summary/Keyword: Mobile healthcare device

Search Result 76, Processing Time 0.021 seconds

Process evaluation of a mobile healthcare program among employees with overweight and obesity: a 12-week intervention study investigating the role of engagement (과체중 및 비만 직장인 대상 모바일 건강관리 프로그램의 참여도에 따른 과정 평가: 12주 중재연구)

  • Imhuei Son;Jiyoun Hong;Young Hee Han;Bo Jeong Gong;Meng Yuan Zhang;Woori Na;Cheongmin Sohn;Taisun Hyun
    • Korean Journal of Community Nutrition
    • /
    • v.28 no.6
    • /
    • pp.466-479
    • /
    • 2023
  • Objectives: A mobile health intervention program was provided for employees with overweight and obesity for 12 weeks, and a process evaluation was completed at the end of the program. We investigated participant engagement based on app usage data, and whether engagement was associated with the degree of satisfaction with the program. Methods: The program involved the use of a dietary coaching app and a wearable device for monitoring physical activity and body composition. A total of 235 employees participated in the program. App usage data were collected from a mobile platform, and a questionnaire survey on process evaluation and needs assessment was conducted during the post-test. Results: The engagement level of the participants decreased over time. Participants in their 40s, high school graduates or lower education, and manufacturing workers showed higher engagement than other age groups, college graduates, and office workers, respectively. The overall satisfaction score was 3.6 out of 5. When participants were categorized into three groups according to their engagement level, the upper group was more satisfied than the lower group. A total of 71.5% of participants answered that they wanted to rejoin or recommend the program, and 71.9% answered that the program was helpful in improving their dietary habits. The most helpful components in the program were diet records and a 1:1 chat with the dietary coach from the dietary coaching app. The barriers to improving dietary habits included company dinners, special occasions, lack of time, and eating out. The workplace dietary management programs were recognized as necessary with a need score of 3.9 out of 5. Conclusions: Participants were generally satisfied with the mobile health intervention program, particularly highly engaged participants. Feedback from a dietary coach was an important factor in increasing satisfaction.

Design of a Personal-Led Health Data Management Framework Based on Distributed Ledger (분산 원장 기반의 개인 주도적 건강 데이터 관리 프레임워크 설계)

  • Moon, Junho;Kim, Dongsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.73-86
    • /
    • 2019
  • After the 4th industrial revolution, the healthcare industry is striving to find new business models through new technologies. Among them, blockchain technology is one of the technologies that have great interest in the healthcare industry. Most providers of personal health record systems have difficulty in securing marketability due to various problems. Therefore, they try to integrate blockchain technology to develop new systems and gain marketability. However, blockchain has limitations in solving the problems of the personal health record system. In this study, we have designed a personalized health data management framework that enables information subjects to acquire full ownership rights of individual's health data, based on distributed ledger technology. For the framework design, we refer to the structure of R3 Corda. It was designed with a different network structure than the existing blockchain systems so that the node can be operated on the personal user's mobile device. This allows information subjects to directly store and manage their own data and share data with authorized network members. Through the proposed system, the information utilization of the healthcare industry can be improved and the public health promotion and medical technology development can be realized.

Implementation and Evaluation of ECG Authentication System Using Wearable Device (웨어러블 디바이스를 활용한 ECG 인증 시스템 구현 및 평가)

  • Heo, Jae-Wook;Jin, Sun-Woo;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.1-6
    • /
    • 2019
  • As mobile technologies such as Internet of Things (IoT)-based smart homes and financial technologies (FinTech) are developed, authentication by smart devices is used everywhere. As a result, presence-based biometric authentication using smart devices has become a new mainstream in knowledge-based authentication methods like the existing passwords. The electrocardiogram (ECG) is less prone to forgery, and high-level personal identification is its unique feature from among various biometric authentication methods, such as the pulse, fingerprints, the face, and the iris. Biometric authentication using an ECG is receiving a great deal of attention due to its uses in healthcare and FinTech. In this study, we implemented an ECG authentication system that allows users to easily measure and authenticate their ECG waveforms using a miniaturized wearable device, rather than a large and expensive measurement device. The implemented ECG authentication system identifies ECG features through P-Q-R-S-T feature point identification, and was user-certified under the proposed authentication protocols. Finally, assessment of measurements in a majority of adult males showed a relatively low false acceptance rate of 1.73%, and a low false rejection rate of 4.14%, in a stable normal state. In a high-activity state, the false acceptance rate was 13.72%, and the false rejection rate was 21.68%. In a high-heart rate state, the false acceptance rate was 10.48%, and the false rejection rate was 11.21%.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

Study on the Smart 1RM System Development and Effect Verification for Health Improvement and Management of National Healthcare (국민 건강관리 및 체력증진을 위한 스마트 1RM 시스템 개발 및 효과 검증에 관한 연구)

  • Woo, Kyung-Min;Shin, Mi-Yeon;Yu, Chang-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • In this study, we developed a smart 1RM system for national health management and physical fitness, which enables quantitative 1RM measurement in various types of exercise using digital pulley technology, and to test the effect on training by using it. We developed the smart 1RM system, which is composed of portable muscle strength measuring device, Bluetooth communication based mobile phone data transmission and circuit diagram, and height adjustable system body. We recruited the 30 participants with 20th aged and divided into training and non-performing groups with 15 participants randomly. The participants performed 5 sets of elbow, lumbar, knee extension / flexion 10 times using smart 1RM system and the experimental period was 3 days a week for a total of 8 weeks. The experimental results showed that the maximum strength of the elbow, lumbar, and knee joints was significantly improved before and after maximal muscle strength training in the training group. Oxygen intakes during 1RM exercise mode showed 10.91% than endurance. To verify the validity of the smart 1RM maximal strength data, the reliability was 0.895 (* p <0.00). This study can be applied to the early rehabilitation treatment of the elderly and rehabilitation patients more quantitatively using the national health care.

Smartphone vs Wearable, Finding the Correction Factor for the Actual Step Count - Based on the In-situ User Behavior of the Two Devices - (스마트폰 vs 웨어러블, 실제 걸음 수 산출을 위한 보정계수의 발견 - 두 기기의 In-situ 활용 행태 비교를 바탕으로 -)

  • Han, Sang Kyu;Kim, Yoo Jung;An, A Ju;Heo, Eun Young;Kim, Jeong Whun;Lee, Joong Seek
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.123-135
    • /
    • 2017
  • In recent mobile health care service, health management using number of steps is becoming popular. In addition, a variety of activity trackers have made it possible to measure the number of steps more accurately and easily. Nevertheless, the activity tracker is not popularized, and it is a trend to use the pedometer sensor of the smartphone as an alternative. In this study, we tried to find out how much the number of steps collected by the smartphone versus the actual number of steps in actual situations, and what factors make the difference. We conducted an experiment to collect number of steps data of 21 people using the smartphone and wearable device simultaneously for 7 days. As a result, we found that the average number of steps of the smartphone is 62% compared to the actual number of steps, and that there is a large variation among users. We derived a regression model in which the accuracy of smartphone increases with the degree of awareness of smartphone. We expect that this can be used as a factor to correct the difference from the actual number of steps in the smartphone alone healthcare service.