• Title/Summary/Keyword: Mobile elevated work platform

Search Result 4, Processing Time 0.015 seconds

A Fatigue Analysis Study on the Fractured Fixing Bolts of Mobile Elevated Work Platforms (고소작업대의 파손된 고정볼트의 피로분석에 관한 연구)

  • Choi, Dong Hoon;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • The mobile elevated work platforms(MEWPs) consist of work platform, extending structure, and car, and it is a facility to move persons to working positions. MEWPs are useful but composed complex pieces of equipments, and accidents are caused by equipment defects. Among them, accidents caused by fracture of the bolts fixing the extension structure and the turntable are increasing. In this study, fatigue failure and fatigue life of a turntable fixing bolt subjected to irregular fatigue load were analyzed by FEA. For this purpose, finite element modeling is proposed and structural analysis and fatigue analysis are performed simultaneously for fixing bolts. As a result of the structural analysis, it was confirmed that there is no risk of permanent deformation because the maximum stress acting on the fixing bolt is lower than the yield strength, and fatigue analysis was confirmed that the fatigue life is less than the design standard. The fatigue analysis results of this study can be effectively used for the design and the documentary assessment of the safety certification of the MEWPs by examining the fatigue life of the turntable fixing bolt.

A Study On the Safety Management of construction equipment Using Smart Phone Technology (Focused on poclain and mobile elevated work platform) ("스마트폰" 기반을 활용한 건설장비 안전관리에 관한 연구 (굴삭기, 고소작업대 중심으로))

  • Cho, Joung-Ho;Lim, Jae-Chang;Ko, Young-Wook;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • As contemporary building construction type is getting higher and deeper, construction equipment usage is getting more, and related fatal accidents are on an increasing trend. Because of this, a method was drawn which could grasp the present state of construction equipment management and manage safety of the equipment more easily for accident prevention by choosing 2 kinds of Construction equipment which cause safety accident frequently among the equipment mainly used in construction site. This study suggested a method about construction equipment safety management using "smart phone" base which could be used in safety management for construction equipment by whomever in construction site. After attachment of QR code included safety checklist, It became possible that site managers could check more efficiently by scanning with their smart phone when they inspect equipment. Moreover, by the construction interested who didn't know what and how they have to inspect could point out unsafe condition in the early stage of equipment entering or take unsafe one out of the site by using new smart phone safety checking system is installed, it became possible that critical accident caused by construction equipment was prevented in advance.

A Study On the Safety Management of construction equipment Using Smart Phone Technology (Focused on poclain and mobile elevated work platform) ("스마트폰" 기반을 활용한 건설장비 안전관리에 관한 연구 (굴삭기, 고소작업대중심으로))

  • Jo, Jeong-Ho;Im, Jae-Chang;Go, Yeong-Uk;Gang, Gyeong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.43-59
    • /
    • 2012
  • As contemporary building construction type is getting higher and deeper,construction equipment usage is getting more, and related fatal accidents are on an increasing trend. In these days, due to the deteriorating construction business circumstance, job finding problem of equipment operator, and dumping contract, equipment lease suppliers are putin jeopardy. In high-rise building construction, especially tower crane, mobile elevated work platform and other High place operation cars among construction equipment cause many critical accidents because of drop supply of construction biding bringing out dumping contract could cause unsafe and poor construction management. Because of this, a method was drawn which could grasp the present state of construction equipment management and manage safety of the equipment more easily for accident prevention by choosing 2 kinds of Construction equipment which cause safety accident frequently among the equipment mainly used in construction site. This study suggested a method about construction equipment safety management using "smart phone" base which could be used in safety management for construction equipment by whomever in construction site. After attachment of QR code included safety checklist, It became possible that site managers could check more efficiently by scanning with their smart phone when they inspect equipment. Moreover, by the construction interested who didn't know what and how they have to inspect could point out unsafe condition in the early stage of equipment entering or take unsafe one out of the site by using new smart phone safety checking system is installed, it became possible that critical accident caused by construction equipment was prevented in advance.

  • PDF

A Study on the Safety Improvement of Structural Weakness Using Accident Analysis for Vehicle-Mounted MEWP (차량탑재형 고소작업대의 재해분석을 통한 취약 구조부의 안전성 향상 방안에 관한 연구)

  • Yoo, Yong-tae;Seo, Su-eun;You, Hee-Jae;Kang, Kyung-sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.15-25
    • /
    • 2017
  • The findings were summarized as follows. The safety check by manufacturer showed that 6 of 13 companies are over the average occurrence of defects. It was expected that there would be a difference between manufacturing technology capability and production system of each manufacturer. Consequently, manufacturers should institutionally improve and strengthen certification items for the upward standardization of safety certification before factory. Second, the safety check by year showed that the results of this study accord with those of previous studies on defect time. Consequently, manufacturers should classify the 3-year-old equipment for vehicle-mounted MEWP into a special check subject to do a nondestructive test according to proven results, and also reflect the test in a safety test system to do regular preventive activities of equipment defects. Third, the safety check by part showed that the boom and outrigger parts of vehicle-mounted MEWP have the most defects. Stress concentration resulted in defects as the boom part was most frequently operated in the structural parts for a real work. To prevent this, it is suitable to improve the hardness of boom materials. The outrigger part needs improvement in safety devices with materials. As an outrigger supports the overturning moment of equipment, it is most affected by its load based on the operating radius, resulting in fatigue crack.