• Title/Summary/Keyword: Mobile Robot Exploration

Search Result 32, Processing Time 0.012 seconds

Rmap+: Autonomous Path Planning for Exploration of Mobile Robot Based on Inner Pair of Outer Frontiers

  • Buriboev, Abror;Kang, Hyun Kyu;Lee, Jun Dong;Oh, Ryumduck;Jeon, Heung Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3373-3389
    • /
    • 2022
  • Exploration of mobile robot without prior data about environments is a fundamental problem during the SLAM processes. In this work, we propose improved version of previous Rmap algorithm by modifying its Exploration submodule. Despite the previous Rmap's performance which significantly reduces the overhead of the grid map, its exploration module costs a lot because of its rectangle following algorithm. To prevent that, we propose a new Rmap+ algorithm for autonomous path planning of mobile robot to explore an unknown environment. The algorithm bases on paired frontiers. To navigate and extend an exploration area of mobile robot, the Rmap+ utilizes the inner and outer frontiers. In each exploration round, the mobile robot using the sensor range determines the frontiers. Then robot periodically changes the range of sensor and generates inner pairs of frontiers. After calculating the length of each frontiers' and its corresponding pairs, the Rmap+ selects the goal point to navigate the robot. The experimental results represent efficiency and applicability on exploration time and distance, i.e., to complete the whole exploration, the path distance decreased from 15% to 69%, as well as the robot decreased the time consumption from 12% to 86% than previous algorithms.

Terrain Exploration Using a Mobile Robot with Stereo Cameras (스테레오 카메라를 장착한 주행 로봇의 야외 탐사)

  • Yoon, Suk-June;Park, Sung-Kee;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.766-771
    • /
    • 2004
  • In this paper, new exploration mobile robot is presented. This mobile robot, called Robhaz-6W, is able to overcome hazardous terrains, recognize three dimensional terrain information and generate a path toward the destination by itself. We develop the passive four bar linkage mechanism adoptable to such terrain without any active control and the real time stereo vision system for obstacle avoidance, a remote control and a path planning method. And the geometrical information is transmitted to the operator in the remote site via wireless LAN equipment. And finally, experimental results for the passive mechanism, the real time stereo vision system, the path planning are reported, which show the versatility of the proposed mobile robot system to carry out some tasks.

  • PDF

Mobile Robot Based Down-Scaled Mineral Resources Exploration Test System (이동로봇을 이용한 자원탐사 축소모형 실험 시스템 구축 응용)

  • Yu, Son-Cheol;Jung, Hyun-Key;Yoon, Joong-Sun;Pyo, Ju-Hyun;Cho, Sung-Ho;Oh, Dong-Moon;Kang, Dong-Joung
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • This paper presents mobile robot based down-scale mineral resources exploration test system for the USN (Ubiquitous Sensor Network) based exploration. The system emulates the actual exploration environment. Underneath the metal free test plate, a metal object is attached. A magneto-meter mounted mobile robot runs around on the plate to find the metal. The measured magneto-meter values are transferred to the host PC via wireless network. The system enables to improve the reliability of simulation as well as to help efficient exploration system design. Metal-detecting experiments were carried out to illustrate the efficiency of the proposed system.

LiDAR-based Mobile Robot Exploration Considering Navigability in Indoor Environments (실내 환경에서의 주행가능성을 고려한 라이다 기반 이동 로봇 탐사 기법)

  • Hyejeong Ryu;Jinwoo Choi;Taehyeon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • This paper presents a method for autonomous exploration of indoor environments using a 2-dimensional Light Detection And Ranging (LiDAR) scanner. The proposed frontier-based exploration method considers navigability from the current robot position to extracted frontier targets. An approach to constructing the point cloud grid map that accurately reflects the occupancy probability of glass obstacles is proposed, enabling identification of safe frontier grids on the safety grid map calculated from the point cloud grid map. Navigability, indicating whether the robot can successfully navigate to each frontier target, is calculated by applying the skeletonization-informed rapidly exploring random tree algorithm to the safety grid map. While conventional exploration approaches have focused on frontier detection and target position/direction decision, the proposed method discusses a safe navigation approach for the overall exploration process until the completion of mapping. Real-world experiments have been conducted to verify that the proposed method leads the robot to avoid glass obstacles and safely navigate the entire environment, constructing the point cloud map and calculating the navigability with low computing time deviation.

Implementation of an Indoor Mobile Robot and Environment Recognition using Line Histogram Method (실내 자율주행 로봇의 구현 및 라인 히스토그램을 이용한 환경인식)

  • Moon, Chan-Woo;Lee, Young-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.45-50
    • /
    • 2009
  • The environment exploration is an essential process for indoor robots such as clean robot and security robot. Apartment house and office building has common frame structure, but internal arrangement of each room may be slightly different. So, it is more convenient to use a common frame map than to build a new map at every time the arrangement is changed. In this case, it is important to recognize invariant features such as wall, door and window. In this paper, an indoor mobile robot is implemented, and by using the laser scanner data and line segment histogram with respect to segment orientation and distance, an environment exploration method is presented and tested. This robot is fitted with a laser scanner, gyro sensor, ultra sonic sensor and IR sensor, and programed with C language.

  • PDF

Mobile Robot Path Planner for Environment Exploration (효율적 환경탐사를 위한 이동로봇 경로 계획기)

  • Bae, Jung-Yun;Lee, Soo-Yong;Lee, Beom-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • The Mobile robots are increasingly being used to perform tasks in unknown environments. The potential of robots to undertake such tasks lies in their ability to intelligently and efficiently search in an environment. An algorithm has been developed for robots which explore the environment to measure the physical properties (dust in this paper). While the robot is moving, it measures the amount of dust and registers the value in the corresponding grid cell. The robot moves from local maximum to local minimum, then to another local maximum, and repeats. To reach the local maximum or minimum, simple gradient following is used. Robust estimation of the gradient using perturbation/correlation, which is very effective when analytical solution is not available, is described. By introducing the probability of each grid cell, and considering the probability distribution, the robot doesn't have to visit all the grid cells in the environment still providing fast and efficient sensing. The extended algorithm to coordinate multiple robots is presented with simulation results.

  • PDF

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Development of Haptic Glove for Remote Control (이동로봇의 원격제어를 위한 햅틱 글러브 개발)

  • Hwang, Yo-Seop;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1030-1035
    • /
    • 2011
  • The remote control of mobile robot is widely used to perform dangerous and complex tasks such as underwater exploration and cleaning of nuclear reactor. For this purpose, the obstacle avoidance process will proceed to ensure a safe drive. In this paper, we tested that mobile robot drive in which replaced a pipe with a box. After we measured the distance around the obstacle through a sensor of robot, we got the information that changed haptic force from the distance of the obstacle.

Mobile Robot Exploration in Unknown Environment using Hybrid Map (미지의 환경에서 하이브리드 맵을 활용하는 모바일 로봇의 탐색)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2013
  • Mobile robot has the exploration function in order to perform its own task. Robot exploration can be used in many applications such as surveillance, rescue and resource detection. The workspace that robots performed in was complicated or quite wide, the multi search using the several mobile robots was mainly used. In this paper, we proposed a scheme that all areas are searched for by using one robot. The method to be proposed extract a area that can be explored in the workspace then the robot investigates the area and updates the map at the same time. The explored area is saved as a hybrid map that combines the nice attributes of the grid and topological maps. The robot can produce the safe navigation route without the obstacles by using hybrid map. The proposed hybrid map uses less memory than a grid map, but it can be used for complete coverage with the same efficiency of a topological map. Experimental results show that the proposed scheme can generate a map of an environment with only 6% of the memory that a grid map requires.

Efficient Exploration for Room Finding Using Wall-Following based Path Planning (벽추종 경로계획 기반의 효과적인 방 찾기 탐사)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1232-1239
    • /
    • 2009
  • This paper proposes an exploration strategy to efficiently find a specific place in large unknown environments with wall-following based path planning. Many exploration methods proposed so far showed good performance but they focused only on efficient planning for modeling unknown environments. Therefore, to successfully accomplish the room finding task, two additional requirements should be considered. First, suitable path-planning is needed to recognize the room number. Most conventional exploration schemes used the gradient method to extract the optimal path. In these schemes, the paths are extracted in the middle of the free space which is usually far from the wall. If the robot follows such a path, it is not likely to recognize the room number written on the wall because room numbers are usually too small to be recognized by camera image from a distance. Second, the behavior which re-explores the explored area is needed. Even though the robot completes exploration, it is possible that some rooms are not registered in the constructed map for some reasons such as poor recognition performance, occlusion by a human and so on. With this scheme, the robot does not have to visit and model the whole environment. This proposed method is very simple but it guarantees that the robot can find a specific room in most cases. The proposed exploration strategy was verified by various experiments.