• Title/Summary/Keyword: Mobile IPv6

Search Result 520, Processing Time 0.034 seconds

Enhanced Cross-Layering Mobile IPv6 Fast Handover over IEEE 802.16e Networks in Mobile Cloud Computing Environment (모바일 클라우드 컴퓨팅 환경에서 IEEE 802.16e 네트워크에서의 향상된 교차계층 Mobile IPv6 빠른 핸드오버 기법)

  • Lee, Kyu-Jin;Seo, Dae-Hee;Nah, Jae-Hoon;Mun, Young-Song
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.45-51
    • /
    • 2010
  • The main issue in mobile cloud computing is how to support a seamless service to a mobile mode. Mobile IPv6 (MIPv6) is a mobility supporting protocol which is standardized by the Internet Engineering Task Force (IETF). Mobile IPv6 fast handovers (FMIPv6) is the extension of MIPv6 which is proposed to overcome shortcomings of MIPv6. Recently, fast handovers for Mobile IPv6 over IEEE 802.16e which is one of broadband wireless access systems has been proposed by the IETF. It was designed for supporting cross-layer fast handover. In this paper, we propose an enhanced cross-layering mobile IPv6 fast handover over IEEE 802.16e networks. In our scheme, a new access router generates a new address for the mobile node by using a layer 2 trigger. We utilize a layer 2 message which is sent from a new base station to the new access router in order to inform the new access router of information of the mobile node. A previous access router sends a binding update message to the mobile node's home agent when it acquires the new address of the mobile node. We evaluate the performance of the proposed scheme compared with the existing schemes in terms of the signaling cost and the handover latency. From the results, we observe that the proposed scheme can support fast handover effectively over IEEE 802.16e networks than existing schemes.

Study on Mobile Multicast Support over Mobile IPv6 Networks (Mobile IPv6 망에서 이동 멀티캐스트 지원 방안에 관한 연구)

  • 변태영;김성희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1187-1193
    • /
    • 2003
  • The interest for IPv6, which is next generation IP, increases, while the difficulty for adopting it into IT industries also increases too. We also expect that Internet technologies develop on basis of All-IP networks, which include various heterogeneous networks. Therefore, it is necessary for network to support mobility and multicast capability to create applications with wide-variety. In this paper, we propose a new mobile multicasting protocol called Mobile IPv6 Multicast Protocol(MIMP). The proposed scheme satisfies no packet losses from roaming and optimal routing efficiency.

A Localized Mobility Support Scheme for Mobile Nudes in IPv6 Networks (IPv6 네트워크에서 이동 단말의 지역적 이동성 제공 방안)

  • 전홍선;우미애
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8B
    • /
    • pp.762-770
    • /
    • 2004
  • With rapid advances in wireless communication technologies and with the advent of the smaller and high-performance mobile handsets nowadays, many researches are actively performed for providing seamless communications while mobile nodes are roaming around. As real-time application programs are more prevalent, it is very important to manage mobility of mobile nodes efficiently. In this paper, we propose a localized mobility support scheme that is based on the Mobile IPv6 by IETF. The proposed scheme enhances functionalities in mobile nodes and only uses signaling messages of Mobile IPv6. The performance of the proposed scheme is evaluated through analytical model and simulations. According to the results of the evaluation, the proposed scheme provides better performance than Mobile IPv6 in terms of packet losses and TCP throughput by localizing the binding update messages inside the foreign domain during handoffs and reducing binding update time.

Hardware-Based Mobile IPv6 Implementation (하드웨어 기반 모바일 IPv6의 구현)

  • Kim, Hye-Ran;Mun, Ju-Hyoung;Kim, Won-Jung;Chu, Ha-Neul;Jhee, Suh-Young;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.40-52
    • /
    • 2007
  • Mobile IP allows mobile end-systems to maintain on-going connections while moving to other links. Based on the Internet Protocol Version 6 (IPv6), mobile IPv6 provides a set of new mobility functions such as route optimization in addition to the functions in mobile IPv4. This paper describes the hardware-based mobile IPv6 implementation which provides all the mobility functionalities in hardware. The hardware-based mobile IPv6 provides faster mobility support than software-based implementation as well as it reduces the number of packet losses which can be caused during the movement. In end-systems equipped with hardware-based mobility support, the CPU can concentrate more on running application programs without wasting its effort for mobility support, and hence it is expected the overall performance improvement.

Seamless Mobility Management in IP-based Wireless/Mobile Networks with Fast Handover

  • Park, Byung-Joo;Hwang, Eun-Sang;Park, Gil-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.266-284
    • /
    • 2009
  • The challenges of rapidly growing numbers of mobile nodes in IPv6-based networks are being faced by mobile computing researchers worldwide. Recently, IETF has standardized Mobile IPv6 and Fast Handover for Mobile IPv6(FMIPv6) for supporting IPv6 mobility. Even though existing literatures have asserted that FMIPv6 generally improves MIPv6 in terms of handover speed, they did not carefully consider the details of the whole handover procedures. Therefore, in conventional protocols, the handover process reveals numerous problems manifested by a time-consuming network layer based movement detection and latency in configuring a new care of address with confirmation. In this article, we study the impact of the address configuration and confirmation procedure on the IP handover latency. To mitigate such effects, we propose a new scheme which can reduce the latency taken by the movement detection, address configuration and confirmation from the whole handover latency. Furthermore, a mathematical analysis is provided to show the benefits of our scheme. In the analysis, various parameters are used to compare our scheme with the current procedures, while our approach is focused on the reduction of handover latency. Finally, we demonstrate total handover scenarios for the proposed techniques and discussed the major factors which contribute to the handover latency.

Analysis of Signaling Load of Mobile IPv6 and Hierarchical Mobile IPv6 (Mobile IPv6와 Hierarchical Mobile IPv6의 시그널링 부하 분석)

  • Kong Ki-Sik;Song MoonBae;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.515-524
    • /
    • 2005
  • As the number of the mobile nodes (MNs) increases in the networks, the signaling traffic generated by mobility management for MNs will increase explosively, and such a phenomenon will probably affect overall network performance. In this paper, we propose a novel analytical approach using a continuous-time Markov chain model and hierarchical network model for the analysis on the signaling load of representative IPv6 mobility support Protocols such as Mobile IPv6 (MIPv6) and Hierarchical Mobile IPv6 (HMIPv6). According to these analytical modeling, this paper derives the various signaling costs, which are generated by an MN during its average domain residence time when MIPv6 and HMIPv6 are deployed under the same network architecture, respectively. In addition, based on these derived costs, we investigate the effects of various mobility/traffic-related parameters on the signaling costs generated by an MN under MIPv6 and HMIPv6. The analytical results show that as the average moving speed of an MN gets higher and the binding lifetime is set . to the larger value, and as its average packet arrival rate gets lower, the total signaling cost generated during its average domain residence time under HMIPv6 will get relatively lower than that under MIPv6, and that under the reverse conditions, the total signaling cost under MIPv6 will get relatively lower than that under HMIPv6.

The Fast and Secure Authentication Mechanism for Proxy Mobile IPv6 (고속의 안전한 Proxy Mobile IPv6 인증 메커니즘)

  • Park, Chang-Seop;Kang, Hyun-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2012
  • Without a proper protection mechanism for the signaling messages to be used for the mobility support in the Proxy Mobile IPv6 (PMIPv6), it is also vulnerable to several security attacks such as redirect attack, MITM (Man-In-The-Middle) attack, replay attack and DoS (Denial of Service) attack as in Mobile IPv6. In this paper, we point out some problems of previous authentication mechanisms associated with PMIPv6, and also propose a new fast and secure authentication mechanism applicable to PMIPv6. In addition, it is also shown that the proposed one is more efficient and secure than the previous ones.

A study on Handover Performance of Mobile IPv6 on Mobile IPv6 testbed (Mobile IPv6 테스트 베드 및 핸드오버 성능 평가에 관한 연구)

  • Kim, Kwang-Deok;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • During communication between wireless users, disconnection may occur during the handover process. The high handover latency during the process of handover degrades the service quality of the wireless communications. This problem becomes more crucial if the operation network is transmitting real-time multimedia applications. This paper studies the hanover procedure of mobile IPv6 and investigates various factors affecting the handover latency through mobile IPv6 testbed and evaluates the various parameters for reducing the handover latency.

  • PDF

A study on Handover Performance of Mobile IPv6 on Mobile IPv6 testbed (Mobile IPv6 테스트 베드 및 핸드오버 성능 평가에 관한 연구)

  • Kim, Dong-Il;Kim, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1961-1965
    • /
    • 2008
  • During communication between wireless users, disconnection may occur during the handover process. The high handover latency during the process of handover degrades the service quality of the wireless communications. This problem becomes more crucial if the operation network is transmitting real-time multimedia applications. This paper studies the hanover procedure of mobile IPv6 and investigates various factors affecting the handover latency through mobile IPv6 testbed and evaluates the various parameters for reducing the handover latency.

Location Recognition Mechanism of Mobile Node for Fast Handover on Proxy Mobile IPv6 (프록시 모바일 IPv6에서 빠른 핸드오버를 위한 이동단말의 위치인지 메커니즘)

  • Bae, Sang-Wook;Kim, Hee-Min;Oudom, Keo;Han, Sun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.459-465
    • /
    • 2010
  • Mobile IPv6(MIPv6) features have several defects such as overloading of nodes, loss of wireless signals, packet loss, movement problem and so forth. Proxy Mobile IPv6 (PMIPv6) got over the limit of MIPv6 problems. MIPv6 features have several defects such as overloading of nodes, loss of wireless signals, packet loss, movement problem and so forth. Research on PMIPv6, which features network-based mobility is actively in progress in order to resolve these issues. PMIPv6 is emerging as a new paradigm that can overcome the limitations of the existing MIPv6. Nevertheless, such PMIPv6 also incurs problems during hand-over. While it offers a solution to node-based problems, it does, too, create long delay times during hand-over. Since MN (Mobile Node) has been sensing its own movements on MIPv6, fast handover can be done easily. However it can't apply fast handover like MIPv6, as it can't apply fast handover like MIPv6 In this paper, the author solved hand-over problem on MIPv6. MAG knows location information of MN and if MN moves into other MAG's area, Location Server gives MN information to the MAG. Therefore, this mechanism makes hand-over process easier.