• Title/Summary/Keyword: Mobile Edge Computing (MEC)

Search Result 52, Processing Time 0.022 seconds

Mobile Edge Computing based Building Disaster Alert System Implementation (Mobile Edge Computing을 활용한 건물 재난 알림 시스템 구축 방안)

  • Ha, Taeyoung;Kim, Jungsung;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • In this paper, a building disaster notification system with MEC (Mobile Edge Computing) technology is proposed, which informs people in a building about the disaster. The overview of MEC is presented, and the structure and characteristics of network using MEC are described. In addition, the characteristics of a enterprise integration pattern based Apache Camel is described, and how to implement MEC with Apache Camel is presented. Finally, an implementation method of building disaster notification system with Apache Camel based MEC is proposed to quickly recognize disasters through sensors and to rapidly evacuate people from buildings.

Hierarchical Service Binding and Resource Allocation Design for Context-based IoT Service in MEC Networks (상황인지 기반 IoT-MEC 서비스를 위한 계층적 서비스 바인딩 및 자원관리 구조 설계)

  • Noh, Wonjong
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.598-606
    • /
    • 2021
  • In this paper, we presents a new service binding and resource management model for context based services in mobile edge computing (MEC) networks. The proposed control is composed of two layers: MEC service bindng control layer (MCL) and user context control layer (UCL). The MCL manages service binding construction, resource allocation, and service policy construction from a system point of view; and the UCL manages real-time service adaptation using meta-objects. Through simulations, we confirmed that the proposed control offers enhanced throughput and content transfer time when it is compared to the legacy computing and control models. The proposed control model can be employed as a key component for the context based various internet-of-things (IoT) services in MEC environments.

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa;Sangman Moh
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.68-76
    • /
    • 2023
  • Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

Validation of Cloud Robotics System in 5G MEC for Remote Execution of Robot Engines (5G MEC 기반 로봇 엔진 원격 구동을 위한 클라우드 로보틱스 시스템 구성 및 실증)

  • Gu, Sewan;Kang, Sungkyu;Jeong, Wonhong;Moon, Hyungil;Yang, Hyunseok;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2022
  • We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.

A Study on Improving Data Poisoning Attack Detection against Network Data Analytics Function in 5G Mobile Edge Computing (5G 모바일 에지 컴퓨팅에서 빅데이터 분석 기능에 대한 데이터 오염 공격 탐지 성능 향상을 위한 연구)

  • Ji-won Ock;Hyeon No;Yeon-sup Lim;Seong-min Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.549-559
    • /
    • 2023
  • As mobile edge computing (MEC) is gaining attention as a core technology of 5G networks, edge AI technology of 5G network environment based on mobile user data is recently being used in various fields. However, as in traditional AI security, there is a possibility of adversarial interference of standard 5G network functions within the core network responsible for edge AI core functions. In addition, research on data poisoning attacks that can occur in the MEC environment of standalone mode defined in 5G standards by 3GPP is currently insufficient compared to existing LTE networks. In this study, we explore the threat model for the MEC environment using NWDAF, a network function that is responsible for the core function of edge AI in 5G, and propose a feature selection method to improve the performance of detecting data poisoning attacks for Leaf NWDAF as some proof of concept. Through the proposed methodology, we achieved a maximum detection rate of 94.9% for Slowloris attack-based data poisoning attacks in NWDAF.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

Increased Energy Efficiency through Task Offloading in Mobile Edge Computing (모바일 엣지 컴퓨팅 환경에서 작업 오프로딩을 통한 에너지 효율성 증대)

  • Lee, Tae-Ho;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.107-108
    • /
    • 2019
  • 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC)은 높은 컴퓨팅 성능을 요구하는 작업을 모바일 장치에서 가까운 MEC 서버로 오프로딩함으로써 모바일 서비스에 높은 계산 요구량을 효율적으로 제공할 수 있는 기술로 부상하였다. 본 논문에서는 실행 대기 시간과 장치 에너지 소비를 줄이기 위해 여러 가지의 독립적 작업을 통해 MEC 시스템에 대한 작업 오프로드 일정 및 전송 에너지 할당을 최적화하는 기법을 제안한다. 시뮬레이션 결과로 MEC 시스템에서 사용 가능한 무선 및 계산 리소스가 상대적으로 균형 잡혀있는 경우 작업 오프로딩 일정이 더 중요하다는 것을 확인했다.

  • PDF

An Offloading Strategy for Multi-User Energy Consumption Optimization in Multi-MEC Scene

  • Li, Zhi;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4025-4041
    • /
    • 2020
  • Mobile edge computing (MEC) is capable of providing services to smart devices nearby through radio access networks and thus improving service experience of users. In this paper, an offloading strategy for the joint optimization of computing and communication resources in multi-user and multi-MEC overlapping scene was proposed. In addition, under the condition that wireless transmission resources and MEC computing resources were limited and task completion delay was within the maximum tolerance time, the optimization problem of minimizing energy consumption of all users was created, which was then further divided into two subproblems, i.e. offloading strategy and resource allocation. These two subproblems were then solved by the game theory and Lagrangian function to obtain the optimal task offloading strategy and resource allocation plan, and the Nash equilibrium of user offloading strategy games and convex optimization of resource allocation were proved. The simulation results showed that the proposed algorithm could effectively reduce the energy consumption of users.