• Title/Summary/Keyword: Mobile Authentication

Search Result 773, Processing Time 0.026 seconds

Context-based Authentication Service for The Mobile Office

  • Yang, Jiyoung;Lee, Hyundong;Rhyoo, Shi-Kook;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1475-1484
    • /
    • 2012
  • Today many companies introduce new mobile office environments evolved from the recent rapid development in mobile device technologies. Most of the recent mobile office systems use a simple authentication scheme such as ID/Password. This method is easy to use, but it does not consider the user's context. Thus it cannot provide appropriate security service required by the user's proper contexts. Therefore, this paper proposes a context based authentication system which applies security level verification and uses fuzzy algorithm based on the importance of access authority control.

Secure Authentication with Mobile Device for Ubiquitous RFID Healthcare System in Wireless Sensor Networks

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.562-566
    • /
    • 2011
  • As telecommunication technologies in telemedicine services are developed, the expeditious development of wireless and mobile networks has stimulated wide applications of mobile electronic healthcare systems. However, security is an essential system requirement since many patients have privacy concerns when it comes to releasing their personal information over the open wireless channels. Due to the invisible feature of mobile signals, hackers have easier access to hospital networks than wired network systems. This may result in several security incidents unless security protocols are well prepared. In this paper, we analyzed authentication and authorization procedures for healthcare system architecture to apply secure M-health systems in the hospital environment. From the analyses, we estimate optimal requirements as a countermeasure to its vulnerabilities.

Enhancing Accuracy Performance of Fuzzy Vault Non-Random Chaff Point Generator for Mobile Payment Authentication

  • Arrahmah, Annisa Istiqomah;Gondokaryono, Yudi Satria;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2016
  • Biometric authentication for account-based mobile payment continues to gain attention because of improvements on sensors that can collect biometric information. We propose an enhanced method for mobile payment security based on biometric authentication. In this mobile payment system, the communication between the user and the relying party is based on public key infrastructure. This method secures both the key and the biometric template in the user side using fuzzy vault biometric cryptosystems, which is based on non-random chaff point generator. In this paper, we consider an important process for the common fuzzy vault system, that is, the feature extraction method. We evaluate various feature extraction methods to enhance the accurate performance of the system.

A Study on Medical Information Platform Based on Big Data Processing and Edge Computing for Supporting Automatic Authentication in Emergency Situations (응급상황에서 자동인증지원을 위한 빅데이터 처리 및 에지컴퓨팅 기반의 의료정보플랫폼 연구)

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.87-95
    • /
    • 2022
  • Recently, with the development of smart technology, in medical information platform, patient's biometric data is measured in real time and accumulated into database, and it is possible to determine the patient's emergency situations. Medical staff can easily access patient information after simple authentication using a mobile terminal. However, in accessing medical information using the mobile terminal, it is necessary to study authentication in consideration of the patient situations and mobile terminal. In this paper, we studied on medical information platforms based on big data processing and edge computing for supporting automatic authentication in emergency situations. The automatic authentication system that we had studied is an authentication system that simultaneously performs user authentication and mobile terminal authentication in emergency situations, and grants upper-level access rights to certified medical staff and mobile terminal. Big data processing and analysis techniques were applied to the proposed platform in order to determine emergency situations in consideration of patient conditions such as high blood pressure and diabetes. To quickly determine the patient's emergency situations, edge computing was placed in front of the medical information server so that the edge computing determine patient's situations instead of the medical information server. The medical information server derived emergency situation decision values using the input patient's information and accumulated biometric data, and transmit them to the edge computing to determine patient-customized emergency situation. In conclusion, the proposed medical information platform considers the patient's conditions and determine quick emergency situations through big data processing and edge computing, and enables rapid authentication in emergency situations through automatic authentication, and protects patient's information by granting access rights according to the patient situations and the role of the medical staff.

Efficient and Security Enhanced Evolved Packet System Authentication and Key Agreement Protocol

  • Shi, Shanyu;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.87-101
    • /
    • 2017
  • As people increasingly rely on mobile networks in modern society, mobile communication security is becoming more and more important. In the Long Term Evolution/System Architecture Evolution (LTE/SAE) architecture, the 3rd Generation Partnership (3GPP) team has also developed the improved Evolved Packet System Authentication and Key Agreement (EPS AKA) protocol based on the 3rd Generation Authentication and Key Agreement (3G AKA) protocol in order to provide mutual authentication and secure communication between the user and the network. Unfortunately, the EPS AKA also has several vulnerabilities such as sending the International Mobile Subscriber Identity (IMSI) in plain text (which leads to disclosure of user identity and further causes location and tracing of the user, Mobility Management Entity (MME) attack), man-in-middle attack, etc. Hence, in this paper, we analyze the EPS AKA protocol and point out its deficiencies and then propose an Efficient and Security Enhanced Authentication and Key agreement (ESE-EPS AKA) protocol based on hybrid of Dynamic Pseudonym Mechanism (DPM) and Public Key Infrastructure (PKI) retaining the original framework and the infrastructure of the LTE network. Then, our evaluation proves that the proposed new ESE-EPS AKA protocol is relatively more efficient, secure and satisfies some of the security requirements such as confidentiality, integrity and authentication.

User Authentication Using Biometrics and OTP in Mobile Device (중소기업형 바이오정보와 OTP를 이용한 사용자 인증)

  • Lee, Sang Ho
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.3
    • /
    • pp.27-31
    • /
    • 2014
  • According to increasing of payment and settlements like smart banking, internet shopping and contactless transaction in smart device, the security issues are on the rise, such as the vulnerability of the mobile OS and certificates abuse problem, we need a secure user authentication. We apply the OTP using biometrics and PKI as user authentication way for dealing with this situation. Biometrics is less risk of loss and steal than other authentication that, in addition, the security can be enhanced more when using the biometric with OTP. In this paper, we propose a user authentication using biometrics and OTP in the mobile device.

  • PDF

A Study on the User Authentication and Key Exchange Service for Group Environment (그룹 환경의 사용자 인증 및 키 교환 서비스 프로토콜 연구)

  • Byun, Jin-Wook;Lee, Su-Mi;Lee, Dong-Hoon
    • Journal of Information Technology Services
    • /
    • v.8 no.2
    • /
    • pp.117-136
    • /
    • 2009
  • Over the years a password has been used as a popular authentication method between a client and a server because of its easy-to-memorize property. But, most password-based authentication services have focused on a same password authentication scheme which provides an authentication and key exchange between a client and a server with the same password. With rapid change of communication environments in the fields such as mobile networks, home networking, etc., the end-to-end security allowing users to hold different password is considered as one of main concerns. In this paper, we consider a new authentication service of how each client with different own password is able to authenticate each other, which is a quite new service paradigm among the existing services. This new service can be used in the current or next generation network environment where a mobile user in cell A wants to establish a secure end-to-end channel with users in ceil B, C, and D using only their memorable passwords. This end-to-end security service minimizes the interferences from the operator controlled by network components. To achieve this end-to-end security, we propose an authentication and key exchange service for group users in different realm, and analyze its security in a formal way. We also discuss a generic construction with the existing authentication schemes.

A New Roaming Authentication Framework For Wireless Communication

  • Li, Xiaowei;Zhang, Yuqing;Liu, Xuefeng;Cao, Jin;Zhao, Qianqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.2061-2080
    • /
    • 2013
  • Roaming authentication protocol is widely used in wireless network which can enable a seamless service for the mobile users. However, the classical approach requires the home server's participation during the authentication between the mobile user and the foreign server. So the more the roaming requests are performed the heavier burden will be on the home server. In this paper, we propose a new roaming authentication framework for wireless communication without the home server's participation. The new roaming authentication protocol in the new framework takes advantage of the ID-based cryptography and provides user anonymity. It has good performance compared with the roaming authentication protocols whose authentication do not need the home server's participation in terms of security and computation costs. Moreover, a new User-to-User authentication protocol in the new framework is also present. All the authentications proposed in this paper can be regarded as a common construction and can be applied to various kinds of wireless networks such as Cellular Networks, Wireless Mesh Networks and Vehicle Networks.

A Study on Finding Emergency Conditions for Automatic Authentication Applying Big Data Processing and AI Mechanism on Medical Information Platform

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2772-2786
    • /
    • 2022
  • We had researched an automatic authentication-supported medical information platform[6]. The proposed automatic authentication consists of user authentication and mobile terminal authentication, and the authentications are performed simultaneously in patients' emergency conditions. In this paper, we studied on finding emergency conditions for the automatic authentication by applying big data processing and AI mechanism on the extended medical information platform with an added edge computing system. We used big data processing, SVM, and 1-Dimension CNN of AI mechanism to find emergency conditions as authentication means considering patients' underlying diseases such as hypertension, diabetes mellitus, and arrhythmia. To quickly determine a patient's emergency conditions, we placed edge computing at the end of the platform. The medical information server derives patients' emergency conditions decision values using big data processing and AI mechanism and transmits the values to an edge node. If the edge node determines the patient emergency conditions, the edge node notifies the emergency conditions to the medical information server. The medical server transmits an emergency message to the patient's charge medical staff. The medical staff performs the automatic authentication using a mobile terminal. After the automatic authentication is completed, the medical staff can access the patient's upper medical information that was not seen in the normal condition.

A Study on Providing Secure Storage and User Authentication Using MTM on Mobile Platform (모바일 플랫폼에서 MTM을 이용한 보안영역 제공 및 인증에 관한 연구)

  • Lee, Sun-Ho;Lee, Im-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.293-302
    • /
    • 2011
  • The various information services can be delivered by smartphone through advanced high-speed mobile communication. A smartphone is a mobile device that offers more powerful computing capacity than feature phone. Therefore this device can provide such as web surfing, editing documents, playing video, and playing games. A lot of personal information stored on smartphone. Because it has High usability. Personal information Leaks if the smart phone is lost or stolen may become a big problem. In this paper we have analyzed existing method for providing secure storage and user authentication on mobile platform and derived security requirement. Therefore we propose the following scheme that satisfy security requirement. Proposed scheme providing secure storage with preventing authentication bypass, and availability from damaged data to access secure area.