• Title/Summary/Keyword: Mn-peroxidase

Search Result 140, Processing Time 0.043 seconds

Production of Lignin-Degrading Enzymes by White Rot Fungi Immobilized in a Rotating Bioreactor (회전생물반응기에 고정화된 백색부후균에 의한 리그닌 분해효소의 생산)

  • 조무환;류원률
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The objective of this study is to investigate optimum condition for lignin peroxidase production by white rot fungi Phanerochaete chysosporium IFO 31249 immobilized in a rotating bioreactor. The maximum lignin peroxidase activity of batch culture in rotating bioreactor was 300 U/L. The optimum rotating speed and packing ratio of support for lignin peroxidase production in a rotating bioreactor were 1 rpm and 20%, respectively. The optimum concentration of $MnSO_4$$\cdot$$H_2O$ for manganese-dependent peroxidase production in a rotating bioreactor was 50 ppm. The sufficient supply of oxygen was the most important factor to achieve maximum lignin peroxidase production. It was possible to produce lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) for at least 3 times successive repeated-batch cultures, respectively.

PCR Cloning of Genes Encoding the Mn-Peroxidase Isozyme Family from Trametes versicolor KN9522 Using Degenerate Primers (구름버섯균 KN9522에서 degenerate primer를 이용한 Mn-Peroxidase 동위효소 유전자들의 PCR 클로닝)

  • Jun, Sang-Cheol;Kim, Kyu-Joong
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • Degenerate primers corresponding to the sequences of the N-terminal regions of Mn-peroxidase isozymes were used to isolate the genomic fragments encoding the isozymes of Mn-peroxidase, CVMP1, CVMP2, CVMP3 and CVMP5 from the white-rot fungus Trametes versicolor KN9522. Three isozymes except one gave the expected PCR products (cmp1, cmp2 and cmp5) of about 900 base pairs, respectively. DNA sequence data obtained from each PCR products were used to analyze the BLAST program search on the National Center for Biotechnology Information. cmp1, cmp2 and cmp5 were similar to MPG-I (GenBank accession number Z30668) and PGV-II (GenBank accession number, Z54279) gene T. versicolor PRL572. PCR products of cmp1 and cmp2 showed 77%, 95% base sequence similarities to MPG-I gene and cmp5 showed about 88% similarity to PGV-II gene from T. versicolor PRL572. From this experiment, we could isolate genomic DNA fragments with degenerate primers designed from the N-terminal amino acid sequences of Mn-peroxidase isozyme family.

Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production (III) - Conditions of Manganese Peroxidase Production by Lignin-Degrading Fungus LSK-27 - (리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價) (III) -리그닌분해균(分解菌) LSK-27에 의한 Manganese peroxidase 생산조건(生産條件)-)

  • Jung, Hyun-Chae;Park, Seur-Kee;Kim, Byeong-Soo;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • Effects of culture conditions and Mn(II) addition were investigated for production of extracellular manganese peroxidase by lignin-degrading fungus LSK-27, Nitrogen source was shown to more influence the production of extracellular manganese peroxidase by LSK-27 than carbon source. When peptone or yeast extract as nitrogen source was added, high MnP activity was obtained. Especially, nitrogen-sufficient culture condition was effective in MnP activity, showing significantly increase up to 1.0% peptone concentration, but carbon-sufficient was not. Mn(II) was shown to strongly induce the MnP production in culture fluids of LSK-27. Increase of MnP actiyity was obeserved up to addition of 100ppm Mn(II), and over this Mn(II) concentration appeared to be inhibitory. The highest level of MnP activity was attained when Mn(II) was added after 2 day incubation.

  • PDF

Degradation Characteristics of Ligninsulfonate by Laccase and Mn-peroxidase (Laccase와 Mn-peroxidase에 의한 Ligninsulfonate의 분해 특성)

  • Bae, Hyeun-Jong;Kim, Yoon-Soo;Mun, Sung-Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.27-32
    • /
    • 1995
  • To understand whether ligninolytic enzyme catalyze polymerization or depolymerization of the high molecular weight (HMW) lignin, the action of laccase and Mn-peroxidase (MnP) towards commercial ligninsulfonates (LS) was examined in various conditions of pH and cosubstrates. Polymerization occurred when LS was incubated with laccase at pH 6.0. In contrast, the high molecular weight portions were significant1y reduced at pH 4.5, especially when glucose was added. When LS was treated with MnP at pH 4.5, compounds of low molecular weight were produced. In particular, when cellobiose was added to Mn-P reaction mixture, the breakdown of LS was observed. In conclusion, degradation of LS by laccase and MnP occurred primarily at pH 4.5 where-as polymerization of LS was dominant at pH 6.0. Color index, however, was not greatly changed in the degradation mixtures of LS.

  • PDF

The effect of the dissolved oxygen concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium

  • Choe, Su-Hyeong;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.171-174
    • /
    • 2000
  • The effect of the dissolved oxygen (DO) concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium was studied in the immobilized reactor system. The oxygen levels significantly affected the production of manganese peroxidase (MnP) as well as that of $H_2O_2$. It is known that a high oxygen level is required to produce this enzyme. In this study, however, higher DO concentrations above a critical DO concentration inhibited MnP production. It is thought that a greater $H_2O_2$ production seen with higher DO concentrations caused adverse effects on the MnP production. On the other hand, with lower DO concentrations, $H_2O_2$ did not accumulate enough to stimulate MnP production.

  • PDF

Biodegradation of Endocrine Disrupting Chemicals by Genetic Transformants of Phlebia tremellosa Using Manganese Peroxidase Gene from Trametes versicolor (구름버섯 망간 과산화효소를 도입한 아교버섯 형질전환체에 의한 내분비장애 물질의 생분해)

  • Kum, Hyun-Woo;Kim, Myung-Kil;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.82-85
    • /
    • 2009
  • Endocrine disrupting chemicals (EDCs) disturb animal hormonal system even at very low concentrations, and finally give harmful effects to human through the food web. A white rot fungus Phlebia tremellosa isolated in Korea, was reported to have good degrading activity against the endocrine disrupting phthalates. However, this fungus has very low manganese peroxidase (MnP) activity under various culture conditions while laccase and lignin peroxidase activities were high. We have isolated an MnP cDNA from Trametes versicolor which was involved in the degradation of EDCs, and constructed an MnP expression vector to use in the genetic transformation of P. tremellosa in order to get higher MnP producing strains. Many transformants had integrated expression vector in their chromosomal DNAs, and showed increased MnP activity. One of two transformants showed increased degradation of 4 EDCs (70${\sim}$88%) than the wild type (30${\sim}$45% degradation rates), and showed twice better removal of estrogenic activities generated by the EDCs than the wild type.

Production and Characterization of Manganese Peroxidase from the White Rot Fungus Pleurotus ostreatus in Liquid Culture (액체배양한 느타리 버섯균(Pleurotus ostreatus)으로부터 망간퍼옥시데이즈의 생산 및 특성)

  • Lee, Jae-Sung;Ha, Hyo-Cheol
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.22-26
    • /
    • 2004
  • The ligninolytic basidiomycete, Pleurotus ostreatus K-2946, was produced a manganese peroxidase (MnP) activity when grown in liquid culture with glucose-yeast-peptone (G-Y-P) medium. However, lignin peroxidase (LiP) was not detected in this culture medium. The purification progress of MnP was purified that included chromatography on Sepharose CL-6B, Superdex 75 prep grade and Mono-Q. MnP purified by column chromatography, was 36400 dalton and a pI of 3.95. The optimal pH and temperature of the purified MnP activity were 5.0 and $55^{\circ}C$. The characteristics of MnP produced was quite similar to those of MnP 3 isoenzyme produced by other strains of P. ostreatus.

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Production of Mn-peroxidase and Laccase from Lentinus edodes and Coriolus versicolor (표고 및 구름버섯으로부터 Mn-peroxidase와 Laccase의 생산(生産))

  • Bae, Hyeun-Jong;Han, Ok-Soo;Koh, Hong-Bum;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.87-93
    • /
    • 1993
  • This study was undertaken to investigate the characteristics and the productivities of lignin olytic enzymes: laccase (Lac) and Mn-dependent peroxidase (MnP) from Coriolus versicolor and Lentinus edodes respectively. Enzymes were isolated from cultural filterates and purified according to the standard methods. These enzymes showed one band in SDS-PAGE and their molecular weights were found 62,000 and 45,000 dalton respectively. Polyclonal antibodies against Lac and MnP were raised against mouse. In the ELISA (enzyme-linked immunosorbent assay), Lac and MnP-antiserum produced a strong positive reaction with Lac and MnP antigen($A_{405}$=2.50 and 3.53 respectively). The sera to negative (S/N) ratio was determined by the dividing the mean absorbance of antibodies by the corresponding diluted samples from normal mouse serum. The sera produced showed 2 times more positive reaction in S/N ratio than negative sera.

  • PDF

The Selective Visualization of Lignin Peroxidase, Manganese Peroxidase and Laccase, Produced by White Rot Fungi on Solid Media

  • Ryu, Won-Youl;Jang, Moon-Yup;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.130-134
    • /
    • 2003
  • A visual method for the selective screen Eng of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and lactase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and lactase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.