• Title/Summary/Keyword: Mn acceptor

Search Result 32, Processing Time 0.034 seconds

Effects of Light and Photosynthetic Electron Transport System on the Generation of Singlet Oxygen ($^1$O$_2$) in Ginseng Thylakoid Membrane (인삼 틸라코이드에서 Singlet Oxygen($^1$O$_2$) 생성에 미치는 전자전달계의 영향)

  • Yang, Deok-Cho;Chae, Quae;Lee, Sung-Jong;Kim, Yong-Hae;Kang, Young-Hee
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • In order to Investigate the mechanism of the leaf-burning disease of ginseng (Panax ginseng C.A. Meyer), studies on the generation of singlet oxygen (1O2) and the photooxidation of the pigments were carried out in comparison with the ones of soybean (G1ycine max L). The studies were mainly focalized on the effects of light intensity, light intensity, inhibitor and electron donor/acceptor of the Photosynthetic electron transport system. When we measured the amounts of 1O2 generated in the thylakoids of ginseng and soybean by the irradiation of light (300 w/m2) as a function its time. It was identified that a higher amount of 1O2 was formed in the ginseng thylakoid than the case of soybean. A generation ratio of lO2 between ginseng and soybean sltbstantially identical in the range of light intensities 50∼150w/m2 However much higher amount of 1O2 was generated in ginseng by irradiation of strong intensity of light (200 500w/m2). Wave length dependency on the generation of 1O2 and the pigment photooxidation was observed on ginseng thylakoids; red light (600-700 nm) gave a maximum effect in the contrast with blur green light (400-60 nm). When the ginseng thylalioid was treated with the electron donor (Mn2+) and acceptors (DCPIP, FeCy) of the photosynthetic electron transport system. a drastic inhibition of 1O2 generation was observed. However, treatment with its inhibitors (DCMU, KCW) activated 1O2 generation. An interesting fact that an electron donor or acceptor of the photosystem II(P680) Inhibited 1O2 generation, suggests an intimate relationship between 1O2 generation and photosystem II.

  • PDF

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

Structural and Dielectric Properties of (Ba,Sr,Ca)$TiO_3$ Thick films Doped with $Dy_{2}O_{3}$ ($Dy_{2}O_{3}$가 첨가된 (Ba,Sr,Ca)$TiO_3$ 후막의 구조 및 유전 특성)

  • Yun, Sang-Eun;Lee, Sung-Gap;Park, Sang-Man;Noh, Hyun-Ji;Lee, Young-Hie;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1275-1276
    • /
    • 2007
  • For fabrication of $BaTiO_3$ system Ferroelectric thick films, (Ba,Sr,Ca)$TiO_3$ (BSCT) powders, prepared by using the alkoxide-based sol-gel method, were doped $MnCO_3$ as acceptor and $Dy_{2}O_{3}$ as donor. $MnCO_3$ and $Dy_{2}O_{3}$-doped (Ba,Sr,Ca)$TiO_3$ thick films were fabricated by screen printing techniques on high purity alumina substrates. The structure and dielectric properties were investigated with variation of $Dy_{2}O_{3}$ amount. As a result of the differential thermal analysis(DTA), exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All the BSCT thick films, sintered at $1420^{\circ}C$ for 2h, showed the typical XRD patterns of perovskite polycrystalline structure and no pyrochlore phase was observed. The average grain size and thickness of specimens no doped with $Dy_{2}O_{3}$ was 1.32mm, 52mm, respectively. The relative dielectric constant decreased and dielectric loss increased with increasing amount of $Dy_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Dy_{2}O_{3}$ were 4043 and 0.4% at 1 kHz, respectively. The relative dielectric constant gradually decreased in the measured frequency range from 0.1 to 100 kHz

  • PDF

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

Dielectric and Pyroelectric Properties of Dy-doped BSCT Thick Films by Screen-printing Method

  • Noh, Hyun-Ji;Lee, Sung-Gap;Nam, Sung-Pill
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.527-530
    • /
    • 2009
  • $(Ba_{0.57}Sr_{0.33}Ca_{0.10})TiO_3$(=BSCT) powders, prepared by the sol-gel method, were doped using $MnCO_3$ as the acceptor and $Dy_2O_3$ as the donor. This powder was mixed with an organic vehicle. BSCT thick films were fabricated by the screen-printing techniques on the alumina substrate. The structural and dielectric properties of BSCT thick films were investigated with variation of the $Dy_2O_3$ amount. As a result of the differential thermal analysis (DTA), the exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All the BSCT thick films showed the XRD patterns of a typical polycrystalline perovskite structure. The average grain size of BSCT thick films decreased with an increasing amount of $Dy_2O_3$. The relative dielectric constant and dielectric loss of the BSCT thick film doped $Dy_2O_3$ 0.1mol% were 4637.4 and 1.6% at 1kHz, respectively.

Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho (시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계)

  • 현문식;장인섭;박형수;김병홍;김형주;이홍금;권개경
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.252-259
    • /
    • 1999
  • Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.

  • PDF

Enzymatic Characterization and Substrate Specificity of Thermostable $\beta-Glycosidase$ from Hyperthermophilic Archaea, Sulfolobus shibatae, Expressed in E. coli

  • Park, Na-Young;Cha, Jae-Ho;Kim, Dae-Ok;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.454-460
    • /
    • 2007
  • Enzymatic properties and substrate specificity of recombinant $\beta-glycosidases$ from a hyperthermophilic archaeon, Sulfolobus shibatae (rSSG), were analyzed. rSSG showed its optimum temperature and pH at $95^{\circ}C$ and pH 5.0, respectively. Thermal inactivation of rSSG showed that its half-life of enzymatic activity at $75^{\circ}C$ was 15 h whereas it drastically decreased to 3.9 min at $95^{\circ}C$. The addition of 10 mM of $MnCl_2$ enhanced the hydrolysis activity of rSSG up to 23% whereas most metal ions did not show any considerable effect. Dithiothreitol (DTT) and 2-mercaptoethanol exhibited significant influence on the increase of the hydrolysis activity of rSSG rSSG apparently preferred laminaribiose $(\beta1\rightarrow3Glc)$, followed by sophorose $(\beta1\rightarrow2Glc)$, gentiobiose $(\beta1\rightarrow6Glc)$, and cellobiose $(\beta1\rightarrow4Glc)$. Various. intermolecular transfer products were formed by rSSG in the lactose reaction, indicating that rSSG prefers lactose as a good acceptor as well as a donor. The strong intermolecular transglycosylation activity of rSSG can be applied in making functional oligosaccharides.

Community Structure, Diversity, and Vertical Distribution of Archaea Revealed by 16S rRNA Gene Analysis in the Deep Sea Sediment of the Ulleung Basin, East Sea (16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구)

  • Kim, Bo-Bae;Cho, Hye-Youn;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2010
  • To assess community structure and diversity of archaea, a clone sequencing analysis based on an archaeal 16S rRNA gene was conducted at three sediment depths of the continental slope and Ulleung Basin in the East Sea. A total of 311 and 342 clones were sequenced at the slope and basin sites, respectively. Marine Group I, which is known as the ammonia oxidizers, appeared to predominate in the surface sediment of both sites (97.3% at slope, 88.5% at basin). In the anoxic subsurface sediment of the slope and basin, the predominant archaeal group differed noticeably. Marine Benthic Group B dominated in the subsurface sediment of the slope. Marine Benthic Group D and Miscellaneous Crenarchaeotal Group were the second largest archaeal group at 8-9 cm and 18-19 cm depth, respectively. Marine Benthic Group C of Crenarchaeota occupied the highest proportion by accounting for more than 60% of total clones in the subsurface sediments of the basin site. While archaeal groups that use metal oxide as an electron acceptor were relatively more abundant at the basin sites with manganese (Mn) oxide-enriched surface sediment, archaeal groups related to the sulfur cycle were more abundant in the sulfidogenic sediments of the slope. Overall results indicate that archaeal communities in the Ulleung Basin show clear spatial variation with depth and sites according to geochemical properties the sediment. Archaeal communities also seem to play a significant role in the biogeochemical carbon (C), nitrogen (N), sulfur (S), and metal cycles at each site.

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.