DOI QR코드

DOI QR Code

Dielectric and Pyroelectric Properties of Dy-doped BSCT Thick Films by Screen-printing Method

  • Noh, Hyun-Ji (Dept. of Ceramic Engineering, Eng. Res, Insti., i-cube Center, Gyeongsang National University) ;
  • Lee, Sung-Gap (Dept. of Ceramic Engineering, Eng. Res. Insti., i-cube Center, Gyeongsang National University) ;
  • Nam, Sung-Pill (Dept. of Ceramic Engineering, Eng. Res, Insti., i-cube Center, Gyeongsang National University)
  • 발행 : 2009.12.01

초록

$(Ba_{0.57}Sr_{0.33}Ca_{0.10})TiO_3$(=BSCT) powders, prepared by the sol-gel method, were doped using $MnCO_3$ as the acceptor and $Dy_2O_3$ as the donor. This powder was mixed with an organic vehicle. BSCT thick films were fabricated by the screen-printing techniques on the alumina substrate. The structural and dielectric properties of BSCT thick films were investigated with variation of the $Dy_2O_3$ amount. As a result of the differential thermal analysis (DTA), the exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All the BSCT thick films showed the XRD patterns of a typical polycrystalline perovskite structure. The average grain size of BSCT thick films decreased with an increasing amount of $Dy_2O_3$. The relative dielectric constant and dielectric loss of the BSCT thick film doped $Dy_2O_3$ 0.1mol% were 4637.4 and 1.6% at 1kHz, respectively.

키워드

참고문헌

  1. E. S. Choi, M. K. Lee, K. W. Ryu, S. G. Lee, and Y. H. Lee, ' The Structural and Microwave Dielectric Properties of the BMT Ceramics with Sintering Temperature and BCN Composition Ratio,' lnternational Transactions on Power Engineering, Vol. 51, pp. 305-310, 2002
  2. P. Guggilla, A. K. Batra, J. R. Currie, M. D. Aggarwal, M. A. Alim, and R. B. Lal, ' Pyroelectric Ceramics for Infrared Detection Applications,' Materials Letters, Vol. 60, pp. 1937-1942, 2006 https://doi.org/10.1016/j.matlet.2005.05.086
  3. M. W. Cole, P. C. Joshi, M. H. Ervin, M. C. Wood, and R. L. Pfeffer, 'The influence of Mg doping on the materials properties of $Ba_{1-x}Sr_xTiO_3$ thin films for tunable device applications,' Thin Solid Films, Vol. 374, pp. 34-41, 2000 https://doi.org/10.1016/S0040-6090(00)01059-2
  4. P. C. Joshi, and M. W. Cole, ' Mg-doped $Ba_{0.6}Sr_{0.4}TiO_3$ thin films .for tunab1e microwave applications,' Appl. Phys. Lett. , Vol. 77, pp. 289-291, 2000 https://doi.org/10.1063/1.126953
  5. S. G. Lee, and D. S. Kang, ' Dielectric properties of $ZrO_2-doped (Ba,Sr,Ca)TiO_3$ ceramics for tunab1e microwave device applications,' Materials Letters, Vol. 57, pp.1629-1934, 2003 https://doi.org/10.1016/S0167-577X(02)01043-1
  6. L. C. Sengupta, and S. Sengupta, 'Breakthrough advances in low loss, tunable dielectric materials,' Mat. Res. Innovat., Vol. 2, pp. 278-282, 1999 https://doi.org/10.1007/s100190050098
  7. H. Y. Noh, S. G. Lee, and Y. H. Lee, ' Pyroelectric properties of BSCT thick films for uncoo1ed infrared detectors,' J Ceram. Proc. Res. , Vol. 9, pp. 172-175, 2008
  8. J. Ravez,, C. R. Acad. Sci., Vol. 3, p. 267, 2000 https://doi.org/10.1016/S1387-1609(00)00127-4
  9. S. G. Lee, C. I. Kim, J. P. Kim, and S. H. Lee, ' Structural and dielectric properties of barium strontium calcium titanate thick films modified with MnO2 for phased array antennas,' Materials Letters, Vol. 58, pp. 110-114, 2004 https://doi.org/10.1016/S0167-577X(03)00425-7
  10. T. Hayashi, H. Shinozaki, and K. Sasaki, ' Preparation of $(Ba_xSr_{1-x})TiO_3$ Particles by Vapor-Phase Hydrolysis of Precursors Formed from AlkoxideHydroxide,' Jap. J Appl. Phys. , Vol. 37, pp. 5232-5236, 1998 https://doi.org/10.1143/JJAP.37.5232
  11. B. Jaffe, W. R. Cook, and H. Jaffe: Piezoelectric Ceramics, Academic Press, New York, 1971
  12. R.K. Willardson, and A. C. Beer: Semiconductors and Semimetals, Academic Press, New York, Vo1.5, chap. 6, p.263, 1970

피인용 문헌

  1. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
  2. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  3. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics vol.8, pp.1, 2012, https://doi.org/10.1007/s13391-011-1063-1
  4. Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1068-4
  5. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  6. Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
  7. Giant electrocaloric effect of free-standing Pb 0.85 La 0.1 (Zr 0.65 Ti 0.35 )O 3 thick films fabricated by the self-lift-off screen printing method vol.44, pp.1, 2018, https://doi.org/10.1016/j.ceramint.2017.09.158
  8. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  9. Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content vol.60, pp.7, 2012, https://doi.org/10.3938/jkps.60.1114
  10. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
  11. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-15