• Title/Summary/Keyword: Mixture regression model

Search Result 111, Processing Time 0.025 seconds

Segmentation of the Compensation Packages for Doctors by Mixture Regression Model (혼합회귀모델을 이용한 의사의 선호보상체계 분석)

  • Paik, Soo-Kyung;Kwak, Young-Sik
    • Korea Journal of Hospital Management
    • /
    • v.10 no.4
    • /
    • pp.75-97
    • /
    • 2005
  • The research objective is to empirically investigate the compensation packages maximizing the utilities of internal customers by applying the market segmentation theory. Data was collected from four Korean hospitals in Seoul, Busan and Gyunggi-do. The research is designed to seek the compensation package maximizing the utility of doctors by mixture regression model, which has been applied as latent structure and other type of finite mixture models from various academic fields since early 1980s. The mixture regression model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture regression model is to unmix the sample, to identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. The doctors were segmented into 5 groups by their preference for the compensation package. The results of this study imply that the utility of doctors increases with differentiated compensation package segmented by their preference.

  • PDF

Market Segmentation With Price-Dependent Quality Evaluation in Denim Jeans Market ; Based on Conjoin analysis and mixture model (청바지제품 세분시장 내 가격-품질 평가집단 추출에 관한 연구: 결합분석과 mixture model를 이용하여)

  • 곽영식;이진화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1605-1614
    • /
    • 2002
  • The purpose of this study was to identify the consumers who use the level of price as the indicator of the product quality. In order to implement the purpose of this study, Jeans market had been segmented by the mixture regression model, and price response function was calibrated for each segment. Based on the types of price response function, segments were allocated into one of two groups; the group using the level of price as the quality indicator or the group not using the level of price as that. Then, characteristics of both groups were compared in terms of product attributes and demographic variables. Data were co]looted from the sample of the 23o undergraduate and graduate students in Seoul. For the data analysis, mixture regression model, conjoint analysis, and t-test were used. As a result, jeans market was divided into 5 segments. Segment 1,2,3 were allocated into the group not using the level of price as the quality indicator while segment 4,5 were done into the other group. Significant differences existed between two groups in product attributes, not in demographic variables. Mixture model and conjoint analysis were proved to be an effective set of tools in market segmentation.

Optimal Restrictions on Regression Parameters For Linear Mixture Model

  • Ahn, Jung-Yeon;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.325-336
    • /
    • 1999
  • Collinearity among independent variables can have severe effects on the precision of response estimation for some region of interest in the experiments with mixture. A method of finding optimal linear restriction on regression parameter in linear model for mixture experiments in the sense of minimizing integrated mean squared error is studied. We use the formulation of optimal restrictions on regression parameters for estimating responses proposed by Park(1981) by transforming mixture components to mathematically independent variables.

  • PDF

A Graphical Method for Evaluating the Mixture Component Effects of Ridge Regression Estimator in Mixture Experiments

  • Jang, Dae-Heung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • When the component proportions in mixture experiments are restricted by lower and upper bounds multicollinearity appears all too frequently. The ridge regression can be used to stabilize the coefficient estimates in the fitted model. I propose a graphical method for evaluating the mixture component effects of ridge regression estimator with respect to the prediction variance and the prediction bias.

  • PDF

Model-based inverse regression for mixture data

  • Choi, Changhwan;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.97-113
    • /
    • 2017
  • This paper proposes a method for sufficient dimension reduction (SDR) of mixture data. We consider mixture data containing more than one component that have distinct central subspaces. We adopt an approach of a model-based sliced inverse regression (MSIR) to the mixture data in a simple and intuitive manner. We employed mixture probabilistic principal component analysis (MPPCA) to estimate each central subspaces and cluster the data points. The results from simulation studies and a real data set show that our method is satisfactory to catch appropriate central spaces and is also robust regardless of the number of slices chosen. Discussions about root selection, estimation accuracy, and classification with initial value issues of MPPCA and its related simulation results are also provided.

OPTIMAL RESTRICTIONS ON REGRESSION PARAMETERS FOR LINEAR MIXTURE MODEL

  • Park, Sung-Hyun;Ahn, Jung-Yeon
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.239-250
    • /
    • 1998
  • A method of finding optimal linear restriction on regression parameters in linear model for mixture experiments in the sense of minimizing integrated mean squared error is studied. We use the formulation of optimal restrictions on regression parameters for estimating responses proposed by Park(1981) by transforming mixture components to mathematically independent variables.

  • PDF

A nonparametric Bayesian seemingly unrelated regression model (비모수 베이지안 겉보기 무관 회귀모형)

  • Jo, Seongil;Seok, Inhae;Choi, Taeryon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.627-641
    • /
    • 2016
  • In this paper, we consider a seemingly unrelated regression (SUR) model and propose a nonparametric Bayesian approach to SUR with a Dirichlet process mixture of normals for modeling an unknown error distribution. Posterior distributions are derived based on the proposed model, and the posterior inference is performed via Markov chain Monte Carlo methods based on the collapsed Gibbs sampler of a Dirichlet process mixture model. We present a simulation study to assess the performance of the model. We also apply the model to precipitation data over South Korea.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

A Bayesian Variable Selection Method for Binary Response Probit Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.167-182
    • /
    • 1999
  • This article is concerned with the selection of subsets of predictor variables to be included in building the binary response probit regression model. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the probit regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. The appropriate posterior probability of each subset of predictor variables is obtained through the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as the one with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

Normal Mixture Model with General Linear Regressive Restriction: Applied to Microarray Gene Clustering

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.205-213
    • /
    • 2007
  • In this paper, the normal mixture model subjected to general linear restriction for component-means based on linear regression is proposed, and its fitting method by EM algorithm and Lagrange multiplier is provided. This model is applied to gene clustering of microarray expression data, which demonstrates it has very good performances for real data set. This model also allows to obtain the clusters that an analyst wants to find out in the fashion that the hypothesis for component-means is represented by the design matrices and the linear restriction matrices.