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Abstract

A method of finding optimal linear restriction on regression parameters in linear
model for mixture experiments in the sense of minimizing integrated mean squared
error is studied. We use the formulation of optimal restrictions on regression
parameters for estimating responses proposed by Park(1981) by transforming

mixXture components to mathematically independent variables.

1. Introduction

Mixture problem is a special type of experimental design problem in which
the response Y(or responses) depends only on the relative proportions of the
design factors(or components) and not on the absolute amounts of these
components. If x; is the proportion of the i-th component, then a mixture
problem with ¢ components is characterized by the constraints

Xyttt x,=1 , ¢))
x;20 . |

The functional relationship is assumed to be approximated by the linear mixture

1) The present work was partially supported by the Basic Science Research Institute
program, Ministry of Education, 1997, project No. BSRI-97-1415.
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model,
y(x)=xB+e (2)

where x is a g-vector of input mixture variables, x"=(x;,x,,%,) , and

B=(B,Bs,B,) is a g-vector of unknown regression parameters. Note that
the possible mixtures are restricted to the regular (g—1) dimensional simplex.
The error, &, is assumed to be identically and independently distributed with

mean zero and unknown variance, ¢ . For all observations the model (2) may be

conveniently expressed as
y=XB8+ ¢ 3
where y is the m-vector of observed responses, X is the #Xg design matrix,

and e is the z-vector of errors. The least squares estimator for 8 is

B=(XX)"'Xy .
Suppose ¢ linear restrictions are imposed on the parameter space, such that,
C8=10

in which C is an 7Xg matrix of rank 7{<g). Let B be the least squares
estimator of £ in (3) under the restrictions CBA={. It is well known (see
Searle(1971)) that B has the form of

B=3-(XX)'Claxx)"'c17'CB .

The objective of this paper is to propose the optimal linear restriction on
regression parameters in mixture model. Park(1981) proposed how to find the
optimal restrictions on regression parameters when the response estimator is the
major concern. However, because of the inherent constraints described in (1), the

method cannot be applied directly. So we consider a transformation to use his

optimal restrictions on mixture experiments.
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2. Transforming of mixture Components

The factor space of the ¢ mixture component proportions is represented by a
(¢g—1) -dimensional regular simplex defined according to (1). Instead of working

directly with the ¢ linearly dependent mixture components x,%y,'*,%,, let us

redefine the system in terms of (g— 1) mathematically independent variables
2y,2,"*,24-1. To do so we suggest the following transformation that was
originally due to Claringbold(1955) .

V= (gX —[ )@
where ] is »Xg matrix that has all elements 1 , and O is ¢gXg matrix

defined by

[g—1 0 0 0 5]
-1 (g—2)! 0 0 s
-1 -1 (g=3)m 0 s
6= —:1 -1/ —-m 0 s
1 -1 -m t s
| —1 -1 —-m —t s/
and the elements /,m,:-,1 and s in @ are defined in a manner to force the

sum of squares of the elements in each column inside the brackets to be

alg—1). Theﬁ we define Z as
7Z=VQ (4)

where @ is ¢X g matrix defined by

— di 1 1 1 o L }

Q dlag{ a(g—1) > a(g—2)1 " q(¢g—3m > qt’o

to make the ranges of the transformed variables uniform. This transformation
change the design matrix X into Z where

Z= ( gl’ gZ".“’ gq )' y 2= (211'212""721'4)

_ISZUSI ,]‘=1,2,--.,q—1’ leI:O ,i=l,2,"',q.
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Let Z4 be the matrix Z in (4) with the g¢th column removed and augmented

on the left side with an #X1 column of 1's . At the points of the design in the
21, Z3,'**. Z4-1 System, observed values of the response are collected and are
used for the estimation of the parameters in the vector 7 in the model
y=Zprte | ®)
and observed response, y , that is determined by
We)=2'y+e
where 2z’ is a row of the matrix Z4 in (5).
The vector of parameter estimate is
¥=(Z4'Za) " 'Z4' y
"~ and the fitted model in z is
y2)=2"7.
The variance of ¥(2) is given by
var [ W(2)1=2(Z4'Za) "2
Suppose a set_of linear restrictions are imposed on the parameter space, i.e.,
Ly=0 . (6)
in which L is an 7Xqg matrix of rank 7{<g). Let ¥ be the least squares

estimator of 7 under the restriction (6). It is well known (see Searle(1971)) that

¥ has the form of

3={I-(Z4'Z) L' [L(Z4Z) 'L’} L)Y )
=By
where B=1I1-(Z4'Z2) 'L'[L(Z4'Z)"'L'17'L (8)

And the fitted value is

W2)=27 . (9)

242



It is easy to show that
var (9= 0(Za'Zo) ™!
—(Za'Za) 'L L(Za'Z2) T L) L(Z) ' Z) 7!
and
MSE[y(2)] =E(z' 71—z »*
=02 B(Zy'Z4) 'B2+2GLyy'L'Gz
where B is given in (8) and G is given by

G=(Z,'Z) 'L'[L(Z,'Z,) 'L’ ]!

3. Formulation of optimal restrictions

To contrast the precision of »(2) with that of »(2), we examine the

difference,
D(z) = var[3(2)] — MSE[ %2)]
={ var[ %(2)]— var[ %(2)]} —{ squared bias of 3(2)}
= 2(Za'Z) T 'L L(Z4'Z) TV (24 Z0) V2~ 2 GLYY L' G 2
We wish to find an #Xg restriction matrix L , and the corresponding biased

estimator in (7) that maximizes the difference between integrated MSE’s of

y(2) and y(2) over the region R under a weighting function W(Z2),

J= [ { var[}(2)] — MSE[ X 2}dW(2) (10)

= [ D@aw(2)

subject to linear restrictions Ly=0.
To determine the restriction matrix L, we first note that the constraint

L(Z,'Zy) 'L=1, may be imposed without loss of generality. Observe that,

since L(Za'Za) 'L’=HH' for an X7 nonsingular matrix H and
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HL)="HH'L) in (7), it follows that for every L there exists a corresponding

L, such that AL)=AL,) and L{(Zs'ZDL, =1,. If we let
M= 'ngg'dW(g), then
J=1V—1IB

where
v = [{ var[¥(D] - var[ XDV W(2)

=t (ZA'ZW) 'L I(Z4" Z ) —le‘

IB = [ [ sauared bias of 3(2)1dW(2)

=YL I(Z4'Za) " '"M(Z4'Zs) 'L’ Ly
Thus, J is the difference between the integrated difference of var[ y(2)]
— var[ ¥(2)] and the integrated squared bias of y(2). .Therefore, in essence, we
are looking for a restriction matrix L from which the gain in precision of y(2)
over y(2) in terms bf variance is not offset by the squared bias over the region
R. _
We <can now respecify the «class of estimators of interest as
2=U—(Za'Zy) 'L'L)Y for all L such that L(ZA'ZA)“L=I, and Ly=0.
A problem is raised in evaluation of J , for J is a function of the unknown

vector y. Suppose y=dJ8a , where @ are the direction conines of ¥ and § is

1
the length of vector 7 ,8=(2 %) ?. Since « is completely unknown, one might

wish to average J in (10) over an all directions in such a way that the
distribution over all directions is uniform. Note that IB is the only term in J

that involves ¥ , so consider the average of IB over all possible directions.

Since IB is a scalar, we can write
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IB =ty L'I(Zy'Z2) "' M(Zn'Za) 'L’ LA
=8t L' I(Z'Z4) 'M(Z4°Z4) 'L’ La 2]
In Park(1981), the average of @ a’ over all possible directions in such a way
that the distribution over all directions is urﬁform is Iq/ g. Thus, the average of
IB is
&

v ML L(Z4'Z4) "' M(Z4'Z,) " L' L]

and the objective function J for this case may be written as

Jo=t(Z4'Z) 'L’ L(Z4' Z,0) "' M]

- —g L' I(Z4Z) "\ M(Z," Z,) " L L] (11)

Now it is of interest to examine the criterion in (11) for some particular

moment matrix M. Define
A= and T=(T,: T,

1 1 1 0 1 1
where A% =diag (1, oAk, AP =diag (Al it ALY, Ty s

gx(g—7), T, is ¢gxr for some #»<q, A; are eigen values of

ZAZy, A12-22.50 and T is the corresponding orthogonal matrix of the

eigen vectors.

1
The rows of A2T form a basis for g-Euclidian space and from the

condition of I(Z4'Zs) 'L=1,, we can write
L=(DD) Y:ppA2T (12)
where D is any ¢X#» matrix of rank 7.

Suppose now
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_ZAZ4

Then we can show that
nl, =t (Za'Zs)"'L'L1~ (& /@t L’ L]
= r— (8 /@l AV2SpA Y]
= Pr—(&/0) 2 sals
where
Sp=D(DD)"'D={(s).
Since Sp is symmetric and idempotent, 0<s;<1 and 213’.’: r . Therefore, it is

easy to see that =/, is maximized by choosing s;=1 if i=g—7r+1,---,¢ and

s;=0, otherwise. Consequently,

max [n])= Pr— (819 2 A (13
Observe that the maximum is attainable if we take
D=[0:1] and sD=[ 0 ?] .
Substituting this D into (12), we get the optimal restriction matrix,
1 .
L= AT, . (14)
Note that the restricted estimator ¥ with L has the following form,
Y =[1-(Z4'Z)7'L"L"]2
=[I-T, Ty 1%

which means that 3_'* is nothing but the principal component regression

estimator of .
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Suppose now that

M=uw|zzdz,

where 1/w= fRa’g and R is R={z: —1<z;<1 for all 7}. Then, | M=,
where ¢ is a constant, and
Jle=tA(Za'Za) 'L I(Z4'Z0) ']
— (/L' I(Z4'Za) PL L. 15)
Substituting L=(DD’)”2DA”2T; into (15),
Jle =t AT2SpA™P 1 — (89l A2 SpA ™' Spa ']
= & St = (/0] Zsh+ 2]

Since, in the event of severe collinearity, the values of A, A,-1,4,-2,*",etc. are
close to zero, it can be seen that s;=0 for ¢=1,2,---.q— 7, s;=1for
i=g—r+1,-,q, and s;=0 for #j in order to maximize J,. This leads to

the same optimal matrix L*in (14), and
max [J,/c]= & i=;r+1/1f1—782/q. (16)

Note that the criteria (13) and (16) lead to the same optimal number of 7.

For (13), we should drop the zth principal component if and only if

P

__q_Ai>0 an

For (16), we should drop the ¢th principal component if and only if

¢ 8

1 g 0 (18)

which is the same inéquality as (17).

We may use the followings as the estimates of ¢ and & practically.

=y (I—ZsZs'Zs) 20" ) 3/ (n—q) (19)
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2= Y y— yiq_ | (20)
M
where Ay is the median of A,,4;,'--,4,. Note that (19) is equal to

Y ({I-X(X'X)"'X)v/(n—¢q) and that the usual unbiased estimator of & is
Sup= 3'3”_;’221"71 . @1)

But the values of A, A,_1,A4,-2, ", etc. are close to zero, (21) varies extremely

and even have a negative value. So we recommend (20) which is robust to the

values of A;, i=1,2,-, ¢ as the estimator of 4.

We have to transform this optimal restriction , L* y=0, properly, to use for

B , the regression parameter in the mixture model (3). The optimal restriction

would be
C'8=0, (22)
where C*=L*P™!.

1 1 0 0 0]
1 ~(g—-17! 1 0 0
1 —(g—-D7' —(@—-27! 1 0
and p=|1 —@ D7 =27 —(g=3)7" 0
1 —(g=D7) =(g=27 —(¢g=)~' ~ 1
[ 1 — (gD —(¢—27' —(¢—37! - —1]

4. An example

We can evaluate the optimal restriction (22) by an example. The data for this

example are the octane-blending data which appeared in Cornell(1990).
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<Table 1> Gasoline motor octane ratings

Motor Octane

Gasoline Components
atl.5ml Pb/gal

X1 X3 X3 X4 X5 X6 X7 y
0 0.23 0 0 0 0.74 0.03 98.7
0 0.10 0 0 0.12 0.74 0.04 978
0 0 0 0.10 0.12 0.74 0.04 9.6
0 0.49 0 0 0.12 0.37 0.02 92.0
0 0 0 0.62 0.12 0.18 0.08 86.6
0 0.62 0 0 0 0.37 0.01 91.2
0.17 0.27 0.10 0.38 0 0 0.08 819
0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.1
0.17 0.21 0.10 0.38 0 0.06 0.08 824
0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.2
0.21 0.36 0.12 0.25 0 0 0.06 814
0 0 0 0.55 0 0.37 0.08 33.1

The original model is
y =XB8+ &£

9.7 [0 0230 0 0 0.74 0.03][ 8] [&
97.8/ _ [0 0.1 0 0 0.12 0.74 0.04| B[4 | &,

881 lo-0 005 0 0.370.08]8 |en

To transform X into Z,, we should evaluate @ and @ ,

[ 6 0 -0 0 0 0  2.45]
-1 5.92 0 0 0 0 2.45
-1 —1.18 5.80 0 0 0 2.45
&=|—-1 —1.18 —1.45 5.61 0 0 2.45
-1 —1.18 —1.45 —1.87 5.29 0 245
-1 —1.18 —1.45 —1.87 —2.65 4.58 2.45
| —1 —1.18 —1.45 —1.87 —2.65 —4.58 2.45]
(0.024 0 0 0 0 0 0
0 0024 0 0 0 0 0
0 0 0.025 0 0 0 0
=| 0 0 0 0.025 0 0 0]
0 0 0 0 0027 0 O
0 0 0 0 0 0.031 0
L 0 0 0 0 0 0 0
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5. Conclusion

This paper discussed the problem of finding optimal restriction on regression
parameters for mixture model where the collinearity exists in components. We can
apply the optimal restriction proposed by Park(1981) in general regression model
after we transform g¢-component in {g— 1) -dimensional simplex to (g—1)
mathematically independent variables. The method of transformation may have
many choices besides the method we used in this paper. The properties of this

optimal restriction can be evaluated by some criteria such as screening strategy in

Park(1978).
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