본 연구는 우리나라 가계저축률의 정규분포혼합을 추정한다. 2014년 마이크로데이터인 MDSS를 이용하였고 추정방법으로는 깁스알고리즘을 이용하였다. 실증분석결과의 주요내용은 다음과 같다. 첫째, 정규분포혼합을 추정하기 위한 방법으로 깁스알고리즘은 잘 작동하였다. 즉 주요 모수추정치는 모두 정상적 분포를 갖는 것으로 나타났다. 둘째 저축률 자료는 적어도 2개의 성분, 즉 저축률이 평균 0%인 성분과 평균 29.4%인 성분으로 이루어져 있는 것으로 보인다. 즉 우리나라의 가계는 고저축률 집단과 저저축률 집단으로 나누어질 수 있다는 뜻이다. 셋째 정규분포혼합모형 자체는 어떤 가계가 첫째 성분 또는 둘째 성분에 속하는가를 설명할 수 없다. 이에 본 연구는 추가적인 분석을 수행하였지만 소득수준과 가구주 연령은 이에 대한 설명력을 지니지 못하는 것으로 판단된다.
In probabilistic production costing simulation, cumulant method is widely used. But this method have some limitations in some cases. To overcome these serious drawbacks, MONA(Mixture of Normals Approximation) method was proposed. The MONA method uses multiple normals to represent the Equivalent Load Duration Curve. In this paper we investigate the MONA's characteristics by comparing other methods and derive the efficient formulae for MONA. Also, we propose the fundamental algorithm for Mixture of Cumulants Approximation(MOCA) which is the general case of MONA.
Journal of the Korean Data and Information Science Society
/
제16권4호
/
pp.1159-1165
/
2005
Basu et al. (1998) proposed a new density-based estimator, called the minimum density power divergence estimator (MDPDE), which avoid the use of nonparametric density estimation and associated complication such as bandwidth selection. Woodward et al. (1995) examined the minimum Hellinger distance estimator (MHDE), proposed by Beran (1977), in the case of estimation of the mixture proportion in the mixture of two normals. In this article, we introduce the MDPDE for a mixture proportion, and show that both the MDPDE and the MHDE have the same asymptotic distribution at a model. Simulation study identifies some cases where the MHDE is consistently better than the MDPDE in terms of bias.
For the mean vector of a p-variate normal distribution ($p{\geq}4$), the optimal estimation within the class of modified James-Stein type decision rules under the quadratic loss is given when the underlying distribution is that of a variance mixture of normals and when the norm ${\parallel}{\theta}-\bar{\theta}1{\parallel}$ it known.
This paper describes a new method of calculating expected energy generation and loss of load probability (L.O.L.P) for electric power system operation and expansion planning. The method represents an equivalent load duration curve (E.L.D.C) as a mixture of cumulants approximation (M.O.C.A), which is the general case of mixture of normals approximation (M.O.N.A). By regarding a load distribution as many normal distributions-rather than one normal distribution-and representing each of them in terms of Gram-Charller expansion, we could improve the accuracy of results. We developed an algorithm which automatically determines the number of distribution and demarcation points. In modelling of a supply system, we made subsets of generators according to the number of generator outage: since the calculation of each subset's moment needs to be processed rapidly, we futher developed specific recursive formulae. The method is applied to the test systems and the results are compared with those of cumulant, M.O.N.A and Booth-Baleriaux method. It is verified that the M.O.C.A method is faster and more accurate than any other methods.
본 논문에서는 겉보기 무관 회귀모형을 고려하고 디리크레 프로세스 혼합모형을 오차항의 분포로 하는 비모수 베이지안 방법을 제안한다. 제안된 모형을 바탕으로 사후분포를 유도하고 디리크레 프로세스 혼합모형의 붕괴깁스표집 방법을 통해 마코프 체인 몬테 칼로 알고리듬을 구성하고 사후추론을 실시한다. 모형의 성능을 비교하기 위해 모의실험을 실시하고, 더 나아가 한국지역의 강수량 예측에 대한 실제 자료에 적용해 본다.
Journal of the Korean Data and Information Science Society
/
제16권4호
/
pp.1027-1039
/
2005
Consider the problem of estimating a $p{\times}1$ mean vector $\theta(p\geq4)$ under the quadratic loss, based on a sample $X_1$, $X_2$, $\cdots$, $X_n$. We find a Lindley type decision rule which shrinks the usual one toward the mean of observations when the underlying distribution is that of a variance mixture of normals and when the norm $\parallel\;{\theta}-\bar{{\theta}}1\;{\parallel}$ is restricted to a known interval, where $bar{{\theta}}=\frac{1}{p}\;\sum\limits_{i=1}^{p}{\theta}_i$ and 1 is the column vector of ones. In this case, we characterize a minimal complete class within the class of Lindley type decision rules. We also characterize the subclass of Lindley type decision rules that dominate the sample mean.
Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}(p{\geq}4)$ under the quadratic loss, based on a sample $X_1,\;{\cdots}X_n$. We find an optimal decision rule within the class of Lindley type decision rules which shrink the usual one toward the mean of observations when the underlying distribution is that of a variance mixture of normals and when the norm $||{\theta}-{\bar{\theta}}1||$ is known, where ${\bar{\theta}}=(1/p)\sum_{i=1}^p{\theta}_i$ and 1 is the column vector of ones. When the norm is restricted to a known interval, typically no optimal Lindley type rule exists but we characterize a minimal complete class within the class of Lindley type decision rules. We also characterize the subclass of Lindley type decision rules that dominate the sample mean.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.435-442
/
2017
Consider the problem of estimating a $p{\times}1$ mean vector ${\theta}$ (p ${\geq}$ 3) under the quadratic loss from multi-variate normal population. We find a James-Stein type estimator which shrinks towards the projection vectors when the underlying distribution is that of a variance mixture of normals. In this case, the norm ${\parallel}{\theta}-K{\theta}{\parallel}$ is known where K is a projection vector with rank(K) = q. The class of this type estimator is quite general to include the class of the estimators proposed by Merchand and Giri (1993). We can derive the class and obtain the optimal type estimator. Also, this research can be applied to the simple and multiple regression model in the case of rank(K) ${\geq}2$.
Journal of the Korean Data and Information Science Society
/
제11권1호
/
pp.37-45
/
2000
Consider the problem of estimating a $p{\times}1$ mean vector ${\underline{\theta}}(p{\geq}4)$ under the quadratic loss, based on a sample ${\underline{x}_{1}},\;{\cdots}{\underline{x}_{n}}$. We find an optimal decision rule within the class of Lindley type decision rules which shrink the usual one toward the mean of observations when the underlying distribution is that of a variance mixture of normals and when the norm ${\parallel}\;{\underline{\theta}}\;-\;{\bar{\theta}}{\underline{1}}\;{\parallel}$ is known, where ${\bar{\theta}}=(1/p){\sum_{i=1}^p}{\theta}_i$ and $\underline{1}$ is the column vector of ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.