• 제목/요약/키워드: Mixture experiments

Search Result 964, Processing Time 0.026 seconds

Development of Gel Sheet Mask Based on Physical Properties Study of Tamarindus indica Seed Gum, Ethanol, Polyols, and Acid/Base Reaction (타마린드씨검과 에탄올, 폴리올 및 산·염기 반응의 물성 연구를 바탕으로 한 겔 시트 마스크의 개발)

  • Yeo, Hye Lim;Lee, Hyo Jin;Kang, Hae-Ran;Jung, So Young;Lee, So Min;Kim, Hyung Mook;Kwak, Byeong-Mun;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.305-316
    • /
    • 2021
  • This study relates to the development of a new gel sheet mask that finally does not require support based on the reactivity and acid/base reaction experiments of Tamarindus indica seed gum (TG), ethanol, and polyols. When TG and a specific alcohol was mixed at a certain mixing ratio, a transparent gel is formed by reaction with each component, and thus a gel sheet mask without support might be obtained using the mixture. In order to maximize skin tone improvement, a carbonation system of acid and base reactions was introduced, and skin brightness and moisturizing power were evaluated using a spectrophotometer and a moisture measuring device. Through this study, it is expected that the gelation reaction by hydrogen bonding of TG, ethanol, and polyols can be developed into various types, and the gel sheet mask formulation introduced in this study is expected to help develop new products in the future.

Exo-Skeletal Flexible Structure for Communal Touch Device (공용 터치 장치를 위한 외골격 유연 구조)

  • Jeong, Jae-Yun;Lee, EunJi;Park, Hyeongryool;Chu, Won-Shik
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.219-225
    • /
    • 2020
  • Importance of touch equipment and smart learning increases and public institutions and educational facilities are applying smart devices to their daily environments. However, users of public smart devices are at risk of being exposed to the direct and indirect spread of infectious diseases. This study develops an exo-finger that wraps the fingertips of smart device users and is intended to have a disease prevention effect when used on public equipment. An exoskeletal body was fabricated by inserting a secondary material which is a mixture of the activating material, carbon black (CB) and a macromolecular polymer (elastomer) into a mold. This device was confirmed to have a touch function when the CB content was 0.030 wt% or higher, and the content of the elastomer was varied so that it could have a friction force similar to that when a person touches a smart device (a friction coefficient of 2.5). Through experiments, it was concluded that the CB content had little effect on the friction coefficient. As a result of testing the completed prototype on a smart device, it was proven that the developed exoskeletal device can be useful in situations where it is impossible to touch due to wearing protective gears, or when equipment such as gloves is used to prevent the spread of infectious diseases.

Experimental Study on the Thermal Characteristics According to the Content Change of Biodiesel Mixture (바이오디젤 혼합물의 함량변화에 따른 열적 특성에 대한 실험적인 연구)

  • Ju Suk Kim;Jae Sun Ko
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.532-544
    • /
    • 2023
  • Purpose: To identify and evaluate the risk of chemical fire causative substances by using thermal analysis methods (DSC, TGA) for the hazards and physical property changes that occur when newly used biofuels are mixed with existing fuels It is to use it for identification and evaluation of the cause of fire by securing data related to the method and the hazards of the material according to it. Method: The research method used in this experiment is the differential scanning calorimeter (DSC: Difference in heat flux) through quantitative information on the caloric change from the location, shape, number, and area of peaks. flux) was measured, and the weight change caused by decomposition heat at a specific temperature was continuously measured by performing thermogravimetric analyzer (TGA: Thermo- gravimetric Analyzer). Result: First, in the heat flux graph, the boiling point of the material and the intrinsic characteristic value of the material or the energy required for decomposition can be checked. Second, as the content of biodiesel increased, many peaks were identified. Third, it was confirmed through analysis that substances with low expected boiling points were contained. Conclusion: It was shown that the physical risk of the material can be evaluated by using the risk of biodiesel, which is currently used as a new energy source, through various physical and chemical analysis techniques (DSC + TGA).In addition, it is expected that the comparison of differences between test methods and the accumulation and utilization of know-how on experiments in this study will be helpful in future studies on physical properties of hazardous materials and risk assessment of materials.

The Interference of Organic Matter in the Characterization of Aquifers Contaminated with LNAPLs by Partitioning Tracer Method (LNAPLs 오염 지반에 분배성 추적자 시험법 적용 시 유기물질의 영향에 관한 연구)

  • Khan, Sherin Momand;Rhee, Sung-Su;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.13-21
    • /
    • 2008
  • Partitioning tracer method is a useful tool to characterize large domains of the aquifers contaminated with light nonaqueous phase liquids (LNAPLs). Sorption of the partitioning tracers to the organic matter content of soil can potentially influence the efficacy of partitioning tracer method. LNAPL-water partitioning coefficients of tracers ($K_{nw}$), measured by static method, showed linear relationship. Sorption isotherm tests were conducted to evaluate the sorption capacity of the soils packed in the columns and the results were appropriately represented by Freundlich sorption isotherm. The sorption of tracers proportionally increased with the increase of the organic matter content of the soil. Laboratory experiments were conducted in four columns each packed with soils of different organic matter contents to determine the potential interference effects of sorption to soil organic matter content and correction factors for the errors in estimation of LNAPLs by partitioning tracer method. Though there were no contaminants added, breakthrough curves from columns packed with mixture of Jumunjin standard sand and organic matter showed separation of tracers. Columns were then contaminated to residual saturation with kerosene and breakthrough curves were obtained. The results show that sorption of tracers to soil organic matter leads to an increase in the retardation factor (R) and hence, to an overestimation of the saturation of LNAPLs. A relation between the percentage of organic matter content and the corresponding percentage error in the estimation of NAPLs has been developed.

Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar (잔골재를 바이오차로 치환한 콘크리트의 강도와 열적 특성)

  • Kyoung-Chul Kim;Kwang-Mo Lim;Min-Su Son;Young-Seok Kim;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.425-432
    • /
    • 2023
  • In this study, we aim to develop a carbon-reducing concrete technology by incorporating biochar. Performance evaluation experiments were conducted on concrete mixtures containing biochar with insulating and carbon-capturing properties, which are essential for key infrastructure sectors such as construction and tunnels. Concrete mixtures were designed with different biochar incorporation rates of 0 %, 5 %, 10 %, 15 %, and 20 %, as w ell as w ater-to-binder ratios of 0.25, 0.30, 0.35, and 0.40. To assess the physical properties of each mixture, unit weight, total porosity, and permeability were measured, while mechanical properties were determined through the measurement of concrete compressive and flexural strengths. Key factors for enhancing the insulating effect of carbon-reducing concrete containing biochar were identified through regression analysis, indicating a close correlation among biochar incorporation rate, unit weight, concrete strength, and thermal conductivity. It is anticipated that it can be utilized as an insulating material to enhance thermal performance in northern regions with severe winter climates.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Influence of Hypoxia on Catecholamine Secretion Evoked by DMPP, McN-A-343, Excess $K^+$ and ACh from The Perfused Rat Adrenal Gland (저산소증이 흰쥐 관류부신에서 DMPP, McN-A-343, Excess $K^+$ 및 Ach의 카테콜아민 분비작용에 미치는 영향)

  • Lim Dong-Yoon;Heo Jae-Bong;Park Yoo Han
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.63-74
    • /
    • 1995
  • It has been known that, during hypoxia, the adrenal medulla is activated to release catecholamines (CA) while hypoxia also inhibits high $K^+$ -induced CA secretion in the cultured bovine adrenal chromaffin cells. The present study was attempted to examine the effect of hypoxia on CA secretion evoked by chlinergic stimulation and membrane-depolarization from the isolated perfused rat adrenal glands and also to clarify its mechanism of action. For this purpose, using the isolated rat adrenal glands, the effects of hypoxia on CA release evoked by nicotinic ($N_1$) and muscarinic ($M_1$) receptor agonists, membrane-depolarizing agent, $Ca^{++}$-channel activator, intracellular $Ca^{++}$-releaser and ACh were determined. Experiments were carried out, perfusing Krebs solution pre-equilibrated with a gas mixture of 95% N_2$ and 5% $CO_2$. Hypoxia was maintained for $3{\sim}4$ hours through the experiments. Hypoxia gradually caused a time-dependent seduction in CA secretion evoked by DMPP ($100{\mu}M$), McN-A-343 ($100{\mu}M$), ACh (5.32 mM), Bay-K-8644 ($10{\mu}M$) and high $K^+$ (56 mM) respectively. How-ever, it did not affect CA secretion evoked by cyclopiazonic acid ($10{\mu}M$). Hypoxia itself also did fail to produce any influence on spontaneous secretory response of CA. These experimental results suggest that hypoxia depresses CA release evoked by both cholinergic stimulation and membrane-depolarization from the isolated rat adrenal medulla, and that this inhibitory activity may be due to the result of the direct inhibition of $Ca^{++}$ influx into the chromaffin cells without any effect on the calcium mobilization from the intracellular store.

  • PDF

Effect of Paddy Drying by Solar Energy Concentration Blast-Grain Circulation Dryer (태양열집열송풍(太陽熱集熱送風), 곡물순환식(穀物循環式) 건조기(乾燥機)의 벼 건조효과(乾燥效果))

  • Lee, B.Y.;Kim, Y.B.;Son, J.R.;Yoon, I.H.;Han, P.J.
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.104-108
    • /
    • 1989
  • A 2.5 ton scale of solar energy concentration blast-grain circulation dryer (SECD) was developed in order to shorten the drying time without damaged paddy. Comparative experiments were carried out on performance, drying efficiency, consistency in moisture content, milling recovery, grade of milled rice, and energy requirement and cost against all that of in-bin drying and storage (IBDS) method. The experiments were performed using mixture of several rice varieties of Tongil type(Japonica-Indica breeding type) under the autumn weather in Korea. The circulating air temperature inside SECD was $4{\sim}5^{\circ}C$ higher than that of IBDS. The moisture content of the paddy during the drying period in SECD was uniform while substantially varied in upper, middle or bottom layer in IBDS. By SECD, 24% initial moisture content of paddy was reduced to 15% after only 3 days of drying as compared to 14 days at IBDS. The percentage of cracked kernels in upper, middle and bottom layers in IBDS was 6, 6 and 12%, respectively, whereas 7% in all layers in SECD. Both types of dryers did not significantly affect the milling recovery of dried paddy and grade of milled rice. Energy requirement of SECD(28.8Kw/2.5ton) for paddy drying was much less than that of IBDS(108Kw/2.5ton).

  • PDF

Effects of Herb Mix® Supplementation on the Performance of Weanling Pigs (Herb Mix® 첨가가 이유자돈 생산성에 미치는 영향)

  • Lee, W.S.;Paik, I.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.321-328
    • /
    • 2007
  • Two pig trials were conducted to test Herb MixⓇ, a mixture of Rehmannia glutinosa, Angelica gigas, Discorea japonica, Glycyrrhiza uralensis, Schisandra chinensis and Ligusticum jeholense, as a herbal additive to weaning pig diet. Exp. 1 was conducted with 45 three-way cross-bred(Y×L×D) weaning pigs randomly allocated to 3 treatments; control, Herb MixⓇ 0.15% and Herb MixⓇ Gold(Plellidendron amurense fortified Herb MixⓇ) 0.15%. Exp. 2 was conducted with 48 weaning pigs randomly allocated to 4 treatments; control, 0.1%, 0.2% and 0.3% Herb MixⓇ. There was a significant(p=0.05) difference between the control and herbal additive groups, however, no significant difference was found between Herb MixⓇ and Herb MixⓇ Gold in growth performance of Exp. 1. In Ex. 2, supplementation of Herb MixⓇ at all level(0.1%, 0.2% and 0.3%) significantly(P<0.05) improved average daily gain and feed intake, however, there were no significant differences among supplemented groups. Among the blood parameters, serum IgG level and WBC numbers were significantly lowered by Herb Mix supplementation in both experiments. Stress indicator(SI) was significantly lower in herbal additive groups in Exp. 1. Nutrient digestibility of DM and NFE in supplemented groups was lower than the control in Exp. 1. Howener, it was not significantly different among treatments in Exp. 2. Number(cfu) of fecal E.coli decreased while that of Lactobacilli increased in treated groups. It was concluded that fortifying Herb MixⓇ with Plellidendron amurense was not effective in improving the efficacy of Herb MixⓇ and supplementation of Herb MixⓇ at 0.1~0.2% level improves growth performance of weaning pigs. Blood parameters especially immunity related ones(IgG, WBC and SI) were significantly influenced.