DOI QR코드

DOI QR Code

Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar

잔골재를 바이오차로 치환한 콘크리트의 강도와 열적 특성

  • 김경철 (한국건설기술연구원 남북한인프라특별위원회 북방인프라특화팀) ;
  • 임광모 (한국건설기술연구원 남북한인프라특별위원회) ;
  • 손민수 (한국건설기술연구원 남북한인프라특별위원회 한반도인프라협력팀) ;
  • 김영석 (한국건설기술연구원 남북한인프라특별위원회 북방인프라특화팀) ;
  • 고경택 (한국건설기술연구원 남북한인프라특별위원회)
  • Received : 2023.11.05
  • Accepted : 2023.11.21
  • Published : 2023.12.30

Abstract

In this study, we aim to develop a carbon-reducing concrete technology by incorporating biochar. Performance evaluation experiments were conducted on concrete mixtures containing biochar with insulating and carbon-capturing properties, which are essential for key infrastructure sectors such as construction and tunnels. Concrete mixtures were designed with different biochar incorporation rates of 0 %, 5 %, 10 %, 15 %, and 20 %, as w ell as w ater-to-binder ratios of 0.25, 0.30, 0.35, and 0.40. To assess the physical properties of each mixture, unit weight, total porosity, and permeability were measured, while mechanical properties were determined through the measurement of concrete compressive and flexural strengths. Key factors for enhancing the insulating effect of carbon-reducing concrete containing biochar were identified through regression analysis, indicating a close correlation among biochar incorporation rate, unit weight, concrete strength, and thermal conductivity. It is anticipated that it can be utilized as an insulating material to enhance thermal performance in northern regions with severe winter climates.

본 연구에서는 바이오차를 혼입한 탄소 저감형 콘크리트 기술을 개발하고자 한다. 주요 인프라 분야인 건축과 터널에 단열성능과 탄소 포집이 가능한 바이오차를 혼입시킨 콘크리트의 성능 평가 실험을 수행하였다. 콘크리트 배합은 바이오차 혼입률 0, 5, 10, 15 및 20 %와 물-바인더 비를 0.25, 0.30, 0.35 및 0.40으로 선정하여 배합조건을 구성하였다. 각 배합별 물리적 특성을 평가하기 위해 단위중량, 총 공극률 및 투수계수를 측정하였고, 역학적 특성을 파악하기 위해 콘크리트 압축강도, 휨강도를 측정하였다. 바이오차를 혼입한 탄소 저감형 콘크리트의 단열 효과를 향상 시키기 위한 주요 인자는 회귀분석을 통해 바이오차 혼입률, 단위중량, 콘크리트 강도 및 열전도율은 서로 밀접한 상관관계를 갖는 것으로 나타났다. 향후 혹한기후 특성을 갖는 북방지역에 단열성능을 높이기 위한 단열재료로 활용될 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(20230068-001, 남북한 공동번영을 위한 인프라 통합·연계 기반 구축 연구).

References

  1. Akhtar. A., Sarmah, K. (2018a). Novel biochar-concrete composites : manufacturing, characterization and evaluation of the mechanical properties, Science of The Total Environment, 616-617, 408-416. https://doi.org/10.1016/j.scitotenv.2017.10.319
  2. Akhtar. A., Sarmah, K. (2018b). Strength improvement of recycled aggregate concrete through silicon rich char derived from organic waste, Journal of Cleaner Production, 196, 411-423. https://doi.org/10.1016/j.jclepro.2018.06.044
  3. Choi, W.C., Yun, H.D., Lee, J.Y. (2012). Mechanical properties of mortar containing bio-char from pyrolysis, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(3), 67-74 [in Korean]. https://doi.org/10.11112/jksmi.2012.16.3.067
  4. Choi, W.G., Park, H.R., Suh, S.J. (2004). A fundamental study for the development of building materials using the charcoal, Journal of the Architectural Institute Korea, 20(3), 185-192. [in Korean].
  5. Cosentino, I., Restuccia L, Ferro, G.A., Tulliani, J.M. (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: the parameters that influence the mechanical properties of biochar cement-based composites, Theoretical and Applied Fracture Mechanics, 103, 102261.
  6. Gupta, S., Kua, H.W., Dai Pang, S. (2020). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature, Construction and Building Materials, 234, 117338.
  7. Han, S., Choi, W. (2023). Evaluation of the mechanical properties of cement mortar containing wood-based bio-char, Journal of the Korea Concrete Institute, 35(3), 285-292 [in Korean]. https://doi.org/10.4334/JKCI.2023.35.3.285
  8. Kim, K.C., Lim, K.M., Son, M.S., Ryu, G.S., Koh, K.T. (2022). Effect of concrete containing the biochar on properties and thermal insulation performance, Journal of the Korean Recycled Construction Resources Institue, 10(4), 428-434 [in Korean].
  9. Kim, Y.M., Choi, H.Y., Chung, Y.G., Ryu, H.G. (2006). A study on the properties and friendly environment efficiency charcoal concrete bricks, Journal of the Korea Institute of Building Construction, 6(1), 123-130 [in Korean]. https://doi.org/10.5345/JKIC.2006.6.1.123
  10. Khushnood, R.A., Ahmad, S., Restuccia, L., Spoto, C., Jagdale, P., Tuliani, J.M., Giuseppe, A.F. (2016). Carbonized nono/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials, Frontiers of Structural and Civil Engineering, 10, 209-213. https://doi.org/10.1007/s11709-016-0330-5
  11. Mohamad, N. Muthusamy, K. Embong, R. Kusbiantoro, A., Hashim, M.H. (2021). Environmental impact of cement production and solutions: a review, Materials Today: Proceedings, 48(4), 741-746. https://doi.org/10.1016/j.matpr.2021.02.212
  12. Restuccia, L., Ferro, G.A. (2016). Nonoparticles from food waste: a "green" future for traditional building materials, Proceedings of the 9th International Conference on Fracture Mechanicals of Concrete and Concrete Structures, 22-25.
  13. Restuccia, L., Reggio, A., Ferro, G.A., Kamranird, R. (2017). Fractal analysis of crack paths into innovative carbon-based cementitious composites, Theoretical and Applied Frature Mechanics, 90, 133-141. https://doi.org/10.1016/j.tafmec.2017.03.016
  14. Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S. (2010). Sustainable biochar to mitigate global climate change, Nature Communications, 1(1), 56.
  15. Yaashikaa, P.R., Kumar, P.S., Varjani, S., Saravanan, A.A.(2020). Critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy, Biotechnology Reports, 28, e00570.
  16. Yang, X., Wang, X.Y. (2021). Hydration-strength-durability-workability of biochar-cement binary blends, Journal of Building Engineering, 42, 103064.