Exo-Skeletal Flexible Structure for Communal Touch Device

공용 터치 장치를 위한 외골격 유연 구조

  • Jeong, Jae-Yun (Department of Mechanical Convergence Engineering, Gyeongsang National University) ;
  • Lee, EunJi (Department of Mechanical Convergence Engineering, Gyeongsang National University) ;
  • Park, Hyeongryool (Department of Mechanical Convergence Engineering, Gyeongsang National University) ;
  • Chu, Won-Shik (Department of Mechanical Convergence Engineering, Gyeongsang National University)
  • 정재윤 (경상대학교 기계융합공학과) ;
  • 이은지 (경상대학교 기계융합공학과) ;
  • 박형률 (경상대학교 기계융합공학과) ;
  • 추원식 (경상대학교 기계융합공학과)
  • Received : 2020.09.11
  • Accepted : 2020.10.30
  • Published : 2020.11.20

Abstract

Importance of touch equipment and smart learning increases and public institutions and educational facilities are applying smart devices to their daily environments. However, users of public smart devices are at risk of being exposed to the direct and indirect spread of infectious diseases. This study develops an exo-finger that wraps the fingertips of smart device users and is intended to have a disease prevention effect when used on public equipment. An exoskeletal body was fabricated by inserting a secondary material which is a mixture of the activating material, carbon black (CB) and a macromolecular polymer (elastomer) into a mold. This device was confirmed to have a touch function when the CB content was 0.030 wt% or higher, and the content of the elastomer was varied so that it could have a friction force similar to that when a person touches a smart device (a friction coefficient of 2.5). Through experiments, it was concluded that the CB content had little effect on the friction coefficient. As a result of testing the completed prototype on a smart device, it was proven that the developed exoskeletal device can be useful in situations where it is impossible to touch due to wearing protective gears, or when equipment such as gloves is used to prevent the spread of infectious diseases.

터치 장비와 스마트 러닝의 중요성이 높아짐에 따라 공공 기관 및 교육시설에서는 스마트 디바이스(smart device)를 업무 및 교육 환경에 적용하는 추세이다. 그러나 공공 스마트 디바이스 사용자들은 직·간접적 감염병 확산에 노출될 위험이 있다. 본 연구는 스마트 디바이스 사용자를 위해 손가락 끝을 감싸는 외골격 장치(Exo-finger)를 개발하였으며, 공용 장비에 활용 시 질병 예방 효과를 가지고자 한다. 활성화 재료인 카본 블랙(Carbon Black, CB)과 고분자 탄성중합체(elastomer)를 혼합한 2차 재료를 금형에 넣어 외골격 장치를 제작하였다. 이 장치는 CB 함량이 0.030 wt.% 이상일 때, 터치 기능이 있는 것으로 확인되었으며 탄성중합체의 함량을 변화시켜 사람이 스마트 디바이스를 터치할 때와 유사한 마찰력(마찰계수 2.5)를 가질 수 있도록 하였다. 실험을 통하여 CB의 함유량은 마찰 계수에 주는 영향이 거의 없음을 확인하였다. 완성된 시제품을 스마트 디바이스에 테스트한 결과, 개발된 외골격 장치는 보호 장구를 착용하여 터치가 불가능한 경우 또는 감염병 확산을 막기 위해 장갑 등의 장비를 사용하는 경우에 유용하게 활용할 수 있음을 확인하였다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP, (NRF-2019R1C1C1005252). The authors wish to express our sincere thanks to the staff and crew of the PSA Facility at the Central Research Facilities of Gyeongsang National University.

References

  1. Archarya, B. (2015). Effective E-Learning Adoption Policies in Developing Countries A Case of Nepal with Conjoint-Based Discrete Choice Approach, PhD Thesis, Seoul National University, pp. 1-69.
  2. Khan, A. I., Alshihi, A., Alkhanjari, Z. A., Sarrab, M. (2015). Mobile Learning (M-Learning) adoption in the Middle East: Lessons learned from the educationally advanced countries, Telematics and Informaics, 32(4), pp. 909-920. https://doi.org/10.1016/j.tele.2015.04.005
  3. Jantjies, M., Joy, M. (2015). Mobile Enhanced Learning in a South African Context, Educational Technology & Society, 18(1), pp. 308-320.
  4. UNESCO. (2014). Reading in the mobile era, UNESCO, France, pp. 13-83.
  5. Pal, P., Roy, A., Moore, G., Muzslay, M., ... & Kelly, J. (2013). Keypad mobile phones are associated with a significant increased risk of microbial contamination compared to touch screen phones, Journal of Infection Prevention, 14(2), pp. 65-68. https://doi.org/10.1177/1757177413475903
  6. Koljalg, S., Mandar, R., Sober, T., Roop, T., Mandar, R. (2017). High level bacterial contamination of secondary school students' mobile phones, Germs, 7(2), pp. 73-77. https://doi.org/10.18683/germs.2017.1111
  7. Dorost, A., Safari, Y., Akhlaghi, M., Soleimani, M., Yoosefpour, N. (2018). Microbial contamination data of keypad and touch screen of cell phones among hospital and non-hospital staffs - A case study: Iran, Data in brief, 20, pp. 80-84. https://doi.org/10.1016/j.dib.2018.07.041
  8. Koscova, J., Hurnikova, Z., Pistl, J. (2018). Degree of bacterial contamination of mobile phone and computer keyboard surfaces and efficacy of disinfection with chlorhexidine digluconate and triclosan to its reduction, International journal of environmental research and public health, 15(10), pp. 2238-2246. https://doi.org/10.3390/ijerph15102238
  9. Gerba, C. P., Wuollet, A. L., Raisanen, P., Lopez, G. U. (2016). Bacterial contamination of computer touch screens, American journal of infection control, 44(3), pp. 358-360. https://doi.org/10.1016/j.ajic.2015.10.013
  10. Elmannma, A., Hassona, I., Marouf, A., Alshaer, G., Ghanima, E. A. (2015). Microbial Load of Touch Screen Mobile Phones Used by University Students and Healthcare Staff, Journal of the Arab American University, 1(1), pp. 1-21.
  11. Page, K., Correia, A., Wilson, M., Allan, E., Parkin, I. P. (2015). Light-activated antibacterial screen protectors for mobile telephones and tablet computers, Journal of Photochemistry and Photobiology A: Chemistry, 296, pp. 19-24. https://doi.org/10.1016/j.jphotochem.2014.08.011
  12. Muzslay, M., Yui, S., Ali, S., Wilson, A. P. R. (2018). Ultraviolet-C decontamination of hand-held tablet devices in the healthcare environment using the Codonics D6000TM disinfection system, Journal of Hospital Infection, 100(3), pp. e60-e63. https://doi.org/10.1016/j.jhin.2018.04.002
  13. Derler, S., Gerhardt, L. C. (2012). Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin, Tribology Letters, 45(1), pp. 1-27. https://doi.org/10.1007/s11249-011-9854-y
  14. Smits, F. M. (1958). Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal, 37(3), pp. 711-718. https://doi.org/10.1002/j.1538-7305.1958.tb03883.x
  15. Kang, J. H., Yu, K. M., Koo, K. W., Han, S. O. (2011). Precision Measurement of Silicon Wafer Resistivity Using Single-Configuration Four-Point Probe Method, The Transactions of the Korean Institute of Electrical Engineers, 60(7), pp. 1434-1437. https://doi.org/10.5370/KIEE.2011.60.7.1434