• Title/Summary/Keyword: Mixing zone

Search Result 319, Processing Time 0.023 seconds

Effect of Thermal Stratification and Mixing on Phytoplankton Community Structure in the Western Channel of the Korea Strait

  • Shon, Dong-Hyun;Shin, Kyoung-Soon;Jang, Pung-Guk;Kim, Young-Ok;Chang, Man;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.261-275
    • /
    • 2008
  • The profile of a fixed site at station M ($34.77^{\circ}N,\;129.13^{\circ}E$) in the Korea Strait was studied from March 2006 to February 2007. The aim was to understand the relationship between the annual thermal stratification pattern and seasonal variation in phytoplankton community structure. Physicochemical factors including temperature, salinity and nutrient concentrations, which strongly influence the proliferation and diversity of phytoplankton, were measured. The study period was divided into three due to the characteristic of thermohaline structures; mixed I (March-May 2006), stratified (June-November 2006) and mixed II(December 2006-Feburuary 2007). Diatoms dominated during the mixed I (89%) and II (48%) periods, while nanoplankton group occupied over 83% of total population during the stratified period. The dominant species during the mixed I and II was Chaetoceros socialis (47% and 29%, respectively), while during the stratified period Gyrodinium sp.(4%) was the most dominant. Averaged total chl a concentrations during the mixed I and II periods were 0.61 mg $m^{-3}$ and 0.72 mg $m^{-3}$, respectively, which were at least two-fold higher than that during the stratified period (0.30 mg $m^{-3}$). The vertical mixing and convection process of the water column induced nutrient supply from the bottom layer to the euphotic zone. It also led to the dominance of diatoms during the mixed periods, whereas small phytoplankton prevailed over large phytoplankton as stratification blocked the upward movement of nutrients to subsurface during the stratified period. During the mixed I and II periods, microplanktonic chl a dominated concentrations (50% and 48%, respectively), while picoplanktonic chl a occupied over 37% of total chl a during the stratified period.

An Analysis on Influences of Seasonal and Tidal Changes to Outfall Design and Management (조석이 방류관의 설계 및 운영에 미치는 영향 분석)

  • Kim, Ji-Yeon;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.259-268
    • /
    • 2004
  • For the last years, it has become hot issue such as disposal of the treated wastewater, which caused by increment of a population and industrial development at the coastal areas. The ocean outfall system discharges primary or secondary treated effluent into coastline or at the deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the see, surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. This paper deals ocean outfall design which effects to decision-making about marine environment management and wastewater treatment. In order to make predictions of dilution of discharged water and the trajectory of a plume, CORMIX has been used considering several elements including a seasonal and tidal changes. These solutions are strung together to provide basic data and general drawings for effective management of outfall.

Assessment of Zeolite Soil Mixture as Adsorptive Fill Material at Industrial Zones (산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가)

  • Kwon, Patrick Sun;Rahim, Shahrokhishahraki;Park, Jun Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • A number of industrial zones in South Korea were reported contaminated by heavy metals. Such contamination could cause severe damage to the subsurface environment including soil and groundwater. The treatment of zeolite mixing with soil at the bottom of such industrial zones might prevent, or at least reduce the damage of contamination by adsorption of the heavy metals from the leakage. However, such mixtures should maintain the proper bearing capacity as a foundation fill material from the geotechnical point of view at the same time. To investigate the effect of mixtures of zeolite with local soils for the adsorption of heavy metals (Zn, Pb) and sustainability of bearing capacity, adsorption isotherm tests and direct shear test with compaction tests were performed. Results showed that the mixing zeolite with local soils effectively reduces the spreading of the heavy metal contamination when maintaining its proper geotechnical properties as a fill material of industrial zones.

Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation (바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석)

  • Lee, Jongmin;Kim, Dongwon;Park, Kyoungil;Lee, Gyuhwa
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.642-650
    • /
    • 2020
  • In general, the circulation path of the fluidized particles in a CFB (Circulating Fluidized Bed) boiler is such that the particles entrained from a combustor are collected by a cyclone and recirculated to the combustor via a sealpot which is one of non-mechanical valves. However, when a fluidized bed heat exchanger (FBHE) is installed to additionally absorb heat from the fluidized particles, some particles in the sealpot pass through the FBHE and then flow into the combustor. At this time, in the FBHE operated in the bubbling fluidization regime, if the heat flow is not evenly distributed by poor mixing of the hot particles (800~950 ℃) flowing in from the sealpot, the heat exchanger tubes would be locally heated and then damaged, and the agglomeration of particles could also occur by formation of hot spot. This may affect the stable operation of the circulating fluidized bed. In this study, the unevenness of heat flow arising from structural problems of the FBHE of the domestic D-CFB boiler was found through the operating data analysis and the CPFD (Computational Particle Fluid Dynamics) simulation using Barracuda VR. Actually, the temperature of the heat exchanger tubes in the FBHE showed the closest correlation with the change in particle temperature of the sealpot. It was also found that the non-uniformity of the heat flow was caused by channeling of hot particles flowing in from the sealpot. However, it was difficult to eliminate the non-uniformity even though the fluidizing velocity of the FBHE was increased enough to fluidize hot particles vigorously. When the premixing zone for hot particles flowing in from the sealpot is installed and when the structure is changed through the symmetrization of the FBHE discharge line for particles reflowing into the combustor, the particle mixing and the uniformity of heat flow were found to be increased considerably. Therefore, it could be suggested that the structural modification of the FBHE, related to premixing and symmetric flow of hot particles, is an alternative to reduce the non-uniformity of the heat flow and to minimize the poor particle mixing.

The Effect of Tidal Cycle and River Runoff on the Dynamic of Nutrients in Keum river estuary (금강하구역에서 영양염 거동에 대한 조석 및 담수유출의 영향)

  • Kim, Jong-Gu;Kang, Hoon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.519-528
    • /
    • 2002
  • This study was to evaluate the impact of river runoff and salt intrusion by tide on nutrient balance of estuary during a complete tidal cycle. 24 hours time series survey was carried out during a spring tide July 2001 on a tidal estuary in the Keum river. Three stations(A,B,C) were set along a transect line of about 10km, which linked the lower part of estuary dyke to the subtidal zone. Surface water was sampled simultaneously at each station every hours f3r the determination of nutrients. Water temperature, pH and dissolved oxygen were measured in situ. Riverine input of silicate and nitrate during ebb tide significantly increased the concentration of all stations. Conversely, during high tide, nutrient concentration were lowered by the mixing of fresh water with sea water Ammonium nitrogen concentration were higher at intertidal zone(Stn.B) due to sewage inflow to Kyeongpo stream and ammonium release under anaerobic conditions. Also, these results was discussed as a biological component that influences the processes of nutrient regeneration within the estuary. Best correlations were found at lower part of estuary dyke(Stn.A) for salinity against DIN(Y=0.121 Sal.+4.97, r2=0.956) and silicate(Y=0.040 Sal.+2.62, r2=0.785). But no significant correlation was found between salinity and ammonium. Unbalanced elemental ratio(N/P, Si/N and Si/P) depended significantly on the import of nutrients (silicate & nitrate nitrogen) from river and stream. The effect of the tidal cycle and river runoff is important that in determining the extend of the variations in nutrient concentrations at all station.

Seasonal Variation of Planktonic Foraminifera Assemblage in response to Seasonal Shift of Inter-Tropical Convergence Zone in the Northeastern Equatorial Pacific (적도수렴대의 위치변화에 따른 북동태평양 적도해역의 부유성 유공충 군집의 계절변동)

  • Lee, Yuri;Asahi, Hirofumi;Woo, Han Jun;Kim, Hyung Jeek;Lee, Seong-Joo;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.437-445
    • /
    • 2014
  • A time-series sediment trap was operated at a water depth of 4950 m from July 2003 to May 2004 at KOMO station ($10^{\circ}30^{\prime}N$, $131^{\circ}20^{\prime}W$) in the northeastern equatorial Pacific, with the aim of understanding the temporal variation of planktonic foraminifera assemblages in response to the seasonal shift of Inter-Tropical Convergence Zone (ITCZ). A total of 22130 planktonic foraminifera specimens belonging to 30 species and 11 genera were identified, which shows a distinct seasonal variation with high values (125~288 specimens $m^{-2}day^{-1}$) in the winter to spring (December-May) and low values (16~23 specimens $m^{-2}day^{-1}$) in the fall (September-November). In addition, seasonal ecological differences of foraminifera assemblages are distinctly recognizable: omnivorous foraminifera occurred predominantly during the summer season, whereas herbivorous ones were dominant during the winter season. Such seasonal variations correspond to the seasonal shift of the ITCZ. Enhanced occurrence of herbivorous species during the winter-spring season seems a result of surface water mixing generated by the southward shift of the ITCZ. The increase in omnivorous species during the summer season may be due to the northward movement of the ITCZ caused by weakened wind speed, resulting in the intensification of water column stratification and nutrient-poor environment. A significant reduction of planktonic foraminifera specimens during the fall is attributed to heavy precipitation and reduction in light intensity.

Analysis of Actual Conditions and Consideration of Specification Plan of Local Theme Science Museum (지방테마과학관의 실태분석 및 특성화방안 고찰)

  • Jung, Jin-Ju
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Through 'Local Theme Science Museum' aid program that is one of emphasis promotion strategic project by 2007 'Science.Technology.Cultural Project Plan', raises status of scientific technique by national core ability because all people expand base that understand and support scientific technique, and forms a social atmosphere which is scientific technique is important which scientific technique can be spread widely on national life and society whole, and proceeds target that expand local science museum facilities by a base of local science culture spreading and popularization. Accordingly, to plan balanced regional development and utilize to an advanced base of local science culture spreading because offer a science culture experience opportunity to local inhabitants, 'Local theme science museum' project is doing for that establish more 100 science museums for national.public.private institution in whole country until 2012 year. Support 39 projects to 2008 from 1999 thereby, in January, 2009, 13 'Local theme science museum' is opened and operated. This study examined arrangement preferentially about 'Science.Technology.Cultural Project Plan' that is background of 'Local theme science museum' project. Since surveying science museum which is on opening and operation at the present and analyzed actual conditions and facilities and investigated specification necessity and direction of 'Local theme science museum'. Hereafter, to seek plan for propriety of project by characteristic and difference of 'Local theme science museum' is purpose of this study. Now, need set and promotion of following specification direction for right activation of proceeding 'Local theme science museum' by each area. First, differentiation of theme and justifiability of building, Second, propriety of site position, Third, maximization of synergy effect by mixing concept of 'Specialized Economic Zone for Regional Developmental Policy' and Ecomuseum's 'Theme center'.

  • PDF

Formation of Acid Mine Drainage and Pollution of Geological Environment Accompanying the Sulfidation Zone of Nonmetallic Deposits: Reaction Path Modeling on the Formation of AMD of Tongnae Pyrophyllite Mine (비금속광상의 황화광염대에 수반되는 산성광산배수의 형성과 지질환경의 오염 : 동래납석광산 산성광산배수의 형성에 관한 반응경로 모델링)

  • 박맹언;성규열;고용전
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.405-415
    • /
    • 2000
  • This study was carried out to understand the formation of acid mine drainage (AMD) by pyrophyllite (so-called Napseok)-rainwater interaction (weathering), dispersion patterns of heavy metals, and patterns of mixing with non-polluted water in the Tongnae pyrophyllite mine. Based on the mass balance and reaction path modeling, using both the geochemistry of water and occurrence of the secondary minerals (weathering products), the geochemical evolution of AMD was simulated by computer code of SOLVEQ and CHILLER. It shows that the pH of stream water is from 6.2 to 7.3 upstream of the Tongnae mine. Close to the mine, the pH decreases to 2. Despite being diluted with non-polluted tributaries, the acidity of mine drainage water maintains as far as downstream. The results of modeling of water-rock interaction show that the activity of hydrogen ion increases (pH decreases), the goncentration of ${HCO_3}^-$ decreases associated with increasing $H^+$ activity, as the reaction is processing. The concentration of ${SO_4}^{2-}$first increases minutely, but later increases rapidly as pH drops below 4.3. The concentrations of cations and heavy metals are controlled by the dissolution of reactants and re-dissolution of derived species (weathering products) according to the pH. The continuous adding of reactive minerals, namely the progressively larger degrees of water-rock interaction, causes the formation of secondary minerals in the following sequence; goethite, then Mn-oxides, then boehmite, then kaolinite, then Ca-nontronite, then Mgnontronite, and finally chalcedony. The results of reaction path modeling agree well with the field data, and offer useful information on the geochemical evolution of AMD. The results of reaction path modeling on the formation of AMD offer useful information for the estimation and the appraisal of pollution caused by water-rock interaction as geological environments. And also, the ones can be used as data for the choice of appropriate remediation technique for AMD.

  • PDF

Investigation on Water Quality Variation Characteristics during Dry Season in Namhan River Drainage Basin (남한강수계 저수기 수질변동 특성에 관한 연구)

  • Lee, H.J.;Kong, D.S.;Kim, S.H.;Shin, K.S.;Park, J.H.;Kim, B.I.;Kim, S.M.;Jang, S.H.;Cheon, S.U.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.889-896
    • /
    • 2007
  • From the direct outflow of Chungju Dam to the junction of water body and watershed in Paldang lake is the scope of this research. This study performed to investigate the main cause of water quality deterioration and the influenced region in the middle field range of the Namhan river Basin with the onsite measurement of water quality and flow rate simultaneously during spring dry season. The purpose of this study is to find out the time-spatial variation characteristics of water quality and flow rate. Following the flow direction $BOD_5$ and $COD_{Mn}$ concentration increased to the highest value of 3.7 mg/L, 5.9 mg/L at Wolgesa respectively. Chl.a concentration increased to $50mg/m^3$ or so at Kangsang, after that it decreased to $37mg/m^3$ at the junction of Paldang lake. Organic matter concentration variation trend showed similar than that of Chl.a. Also $BOD_5$ concentration tendency was similar to Chl.a in every measuring sites except Paldang lake mixing zone. The major factors of water quality deterioration in Namhan river and Paldang lake during dry season were algal bloom and followed internal production. High phosphorus load from Dalcheon and Seom river caused dry season algal bloom and internal production in transitional zone which was stagnant area in downstream of Namhan river.

Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine (디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.