DOI QR코드

DOI QR Code

Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation

바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석

  • 이종민 (한전 전력연구원 발전기술연구소) ;
  • 김동원 (한전 전력연구원 발전기술연구소) ;
  • 박경일 (한전 전력연구원 발전기술연구소) ;
  • 이규화 (한전 전력연구원 발전기술연구소)
  • Received : 2020.06.03
  • Accepted : 2020.07.02
  • Published : 2020.11.01

Abstract

In general, the circulation path of the fluidized particles in a CFB (Circulating Fluidized Bed) boiler is such that the particles entrained from a combustor are collected by a cyclone and recirculated to the combustor via a sealpot which is one of non-mechanical valves. However, when a fluidized bed heat exchanger (FBHE) is installed to additionally absorb heat from the fluidized particles, some particles in the sealpot pass through the FBHE and then flow into the combustor. At this time, in the FBHE operated in the bubbling fluidization regime, if the heat flow is not evenly distributed by poor mixing of the hot particles (800~950 ℃) flowing in from the sealpot, the heat exchanger tubes would be locally heated and then damaged, and the agglomeration of particles could also occur by formation of hot spot. This may affect the stable operation of the circulating fluidized bed. In this study, the unevenness of heat flow arising from structural problems of the FBHE of the domestic D-CFB boiler was found through the operating data analysis and the CPFD (Computational Particle Fluid Dynamics) simulation using Barracuda VR. Actually, the temperature of the heat exchanger tubes in the FBHE showed the closest correlation with the change in particle temperature of the sealpot. It was also found that the non-uniformity of the heat flow was caused by channeling of hot particles flowing in from the sealpot. However, it was difficult to eliminate the non-uniformity even though the fluidizing velocity of the FBHE was increased enough to fluidize hot particles vigorously. When the premixing zone for hot particles flowing in from the sealpot is installed and when the structure is changed through the symmetrization of the FBHE discharge line for particles reflowing into the combustor, the particle mixing and the uniformity of heat flow were found to be increased considerably. Therefore, it could be suggested that the structural modification of the FBHE, related to premixing and symmetric flow of hot particles, is an alternative to reduce the non-uniformity of the heat flow and to minimize the poor particle mixing.

순환유동층 보일러에서 유동 입자들의 순환 경로는 연소로에서 비산된 입자들이 사이클론에서 포집되어 비기계적 밸브인 실포트(Sealpot)를 거쳐 연소로로 재순환하는 일반적인 경로를 갖는다. 그러나, 유동 입자들로부터 열을 추가적으로 흡수하기 위해 유동층 외부열교환기(FBHE; Fluidized Bed Heat Exchanger)가 설치된 경우, 실포트의 일부 입자들은 FBHE를 거쳐 연소로로 재순환하는 경로를 갖게 된다. 이때 기포유동층 영역으로 운전되는 FBHE는 실포트로부터 유입되는 고온(800~950 ℃)의 입자들의 유동 특성에 따라 열교환 튜브의 국부적 가열로 인한 손상 및 hot spot에 의한 입자들의 고온 뭉침(agglomeration)이 발생할 수 있어 순환유동층의 안정적 조업에 영향을 미칠 수 있다. 본 연구에서는 국내 D 순환유동층 보일러의 FBHE에 대한 운전자료 분석 및 바라쿠다를 통한 CPFD(Computational Particle Fluid Dynamics) 해석을 통해 구조적 문제로부터 발생하는 열흐름의 불균일성을 밝혀내었다. 실제 D 순환유동층의 FBHE 열교환 튜브 온도는 실포트의 고체온도 변화와 가장 밀접한 상관관계를 나타내었으며, FBHE 내의 열흐름의 불균일성은 FBHE의 조업 유속의 증가(0.3→0.7 m/s)로는 그 불균일성을 해소하기 어려운 것으로 나타났다. 그러나, FBHE로 유입되는 고온 입자들에 대한 사전 혼합 영역(Premixing Zone)이 설치된 경우와, 연소로로 재순환되는 입자 배출 라인의 대칭화를 통한 구조변경 시, 입자 혼합의 증대와 더불어 열흐름의 불균일성은 상당 부분 감소하는 것으로 고찰되었다. 이에, FBHE의 구조 최적화가 열교환 성능 및 운전 안정성을 확보하는 대안임을 제시하였다.

Keywords

References

  1. Lee, S. H., Lee, T. H., Jung, S. M. and Lee, J. M., "Economic Analysis of a 600 mwe Ultra Supercritical Circulating Fluidized Power Plant Based on Coal Tax and Biomass Co-combustion Plans," Renew. Energy, 138, 121-127(2019). https://doi.org/10.1016/j.renene.2019.01.074
  2. IEA-FBC TCP, "Developments in Fluiidzied Bed Conversion During 2011-2016," Country Report, edited by Jongmin Lee, KEPCO RI, Korea(2017).
  3. Lee, S. H. and Lee, J. M., "Introduction and Current Status of Ultra Supercritical Circulating Fluidized Bed Boiler," KEPCO Journal, 2(2), 211-222(2016).
  4. Lee, J. M., Kim, J. S. and Kim, J. J., "Evaluation of the 200MWe Tonghae CFB Boiler Performance with Cyclone Modification," Energy, 28, 111-118(2003).
  5. Lee, S. H., Lee, J. M., Kim, J. S., Choi, J. H. and Kim, S. D., "Combustion Characteristics of Anthracite Coal in the D CFB Boiler," Korean Chem. Eng. Res., 38(4), 516-522(2000).
  6. Rogalev, N., "A Survey of State of Art Development of Coal Fired Steam Turbine Power Plant Based on Advanced Ultrasupercritical Steam Technology," Contemporary Engineering Science, 7(34), 1807-1825(2014). https://doi.org/10.12988/ces.2014.410191
  7. Wang, L., Yang, D. Shen, Z., Mao, K. and Long, J., "Thermalhydraulic Calculation and Analysis of a 600 MW Supercritical Circulating Fluidized Bed Boiler with Annular Furnace," Applied Thermal Engineering, 95, 42-52(2016). https://doi.org/10.1016/j.applthermaleng.2015.11.014
  8. Lee, J. M., Kim, D. W., Park, K. I. and Kim, S. M., "Performance Analysis of Cyclone and Fludized Bed External Heat Exchanger Through Barracuda Simulation," 23th International Conference on FBC, Spring, Korea, 1171-1177(2018).
  9. Abbasi, A., Ege, P. E. and Lasa, H., "CPFD Simulation of a Fast Fluidized Bed Steam Coal Gasifier Feeding Section," Chemical Engineering Journal, 174, 341-350(2011). https://doi.org/10.1016/j.cej.2011.07.085
  10. Clark, S. M. and Snider, D. M. and Fletcher, R. P., "Multiphase Simulation of a Commercial Fluidized Catalytic Cracking Regenerator," AIChE 2012 Annual Meeting, Pittsburgh, Pennsylvania, USA(2012).
  11. Williams, A. K., "Industrial Applications of CFD for Clean Coal Plant Design," NETL Workshop on Multiphase Flow Science, August, USA(2013).
  12. Wang, B. and Yu, A. B., "Numerical Study of the Gas-liquid-solid Flow in Hydrocyclones with Different Configuration of Vortex Finder," Chemical Engineering Journal, 135, 33-42(2008). https://doi.org/10.1016/j.cej.2007.04.009
  13. Pham, H. H., Lim, Y. I., Han, S. G., Lim, B. S., Ko, H. S., "Hydrodynamics and Design of Gas Distributor in Large-scale Amine Absorbers Using Computational Fluid Dynamics," Korean J. Chem. Eng., 35, 1073-1082(2018). https://doi.org/10.1007/s11814-018-0006-z
  14. Mendoza, J. A. and Hwang, S. W., "Tubular Reactor Design for the Oxidative Dehydrogenation of Butene Using Computational Fluid Dynamics (CFD) Modeling," Korean J. Chem. Eng., 35, 2157-2163(2018). https://doi.org/10.1007/s11814-018-0143-4
  15. Wei, L., Lu, Y., Zhu, J., Jiang, G., Hu, J., and Teng, H., "Effect of Cohesive Powders on Pressure Fluctuation Characteristics of Binary Gas-solid Fliudized Bed," Korean J. Chem. Eng., 35, 2117-2126(2018). https://doi.org/10.1007/s11814-018-0115-8
  16. Wen, C. and Yu, Y., "Mechanics of Fluidization," Chemical Engineering Progress Symposium, 100-111(1966).
  17. Ergun, S., "Fluid Flow Through Packed Columns," Chemical Engineering Progress, 48-89(1949).
  18. CPFD Software, LLC, "Agglomeration Model," Barracuda VR Series 15 User Manual, 68-70(2013).