• Title/Summary/Keyword: Mixing of filling particles

Search Result 14, Processing Time 0.027 seconds

Effect of Mixing Process on the Wear Properties of UHMWPE/Kaolin Composite (입자충전 초고분자량 폴리에틸렌의 마모특성 : 입자충전 방법의 효과)

  • Ki, Nam;Lee, Geon-Woong;Yoon, Ho-Gyu;Park, Hong-Jo;Kwak, Soon-Jong;Kim, Jun-Kyung;Park, Min
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • In this study the wear behavior of ultra high molecular polyethylene (UHMWPE) filled with kaolin particles by different methods was investigated. UHMWPE/kaolin composites were prepared by two different methods: polymerization-filling and powder mixing. Particularly in a powder mixing method. Particle dispersion and wear property according to powder mining method were examined. It was found from wear test that filling of inorganic filler into UHMWPE by polymerization filling was more effective way than by powder mixing method in improving Wear resistance of UHMWPE. It was also confirmed that abrasive wear was dominant wear mechanism and particle dispersion in the composite as well as interface property was an important factor in controlling the wear behavior of the resulting composites.

A Study on the Bending and Compressive Strength of Mortar using Waste Calcium Material as a Filling Material (폐칼슘 재료를 채움재로 사용한 모르타르의 휨·압축강도에 관한 연구)

  • Kim, Han-Nah;Kim, Bong Joo;Jung, Ui In;Seo, Eun-Seok;Hong, Sang Hun;Shin, Dong Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.64-65
    • /
    • 2020
  • Oyster shells are difficult to grind, while oyster shell powders have coarse and coarse grains, whereas egg shell powder, the same high calcium material, has small and soft particles and has opposing properties. In order to study the change in flexural and compressive strength by designing different mixing ratios using 50% of oyster shell powder and egg shell powder as a filling material. As a result of the experiment, there is almost no difference in the result.

  • PDF

A Study on Frequency Dependence on Dielectric Properties of Silicone Rubber Sheets (실리콘 고무 시트의 유전특성에 미치는 주파수 의존성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • In this study, the following results were obtained by analysis of electric properties with FT-IR, DSC, XRD, and SEM, in the range of temperature 30~160℃ and frequency 0.1~200 kHz, when filling agent (0~100 phr) and silicone oil (0~12 phr) were added to raw silicone rubber. In the case of 100 phr mixed samples, the relative dielectric constant εr gradually decreased from 4.3 to 3.96 as frequency increased, and the dielectric loss tan δ decreased to 0.01 at 300 Hz, then increased to 0.022 at 30 kHz, then decreased to 200 kHz. The FT-IR analysis identified the same binding structure according to the chemical composition of added silica (SiO2). Through DSC analysis, we could determine the change of heat quantity and the glass transition temperature of each specimen. In the XRD analysis, it was found that the images SiO2, TiO2, and Fe2O3 appeared for specimens with 0%, 50% and 100% filling agent. Finally, the SEM analysis confirmed that particles of 0.5 to 1.5 ㎛ size with silica (SiO2) mixing were dispersed evenly.

A Study on Electrical Insulation Breakdown and Tensile Strength for Epoxy/Spherical Silica Composites (에폭시/구상실리카 콤포지트의 전기적 절연파괴 및 인장 강도 특성 연구)

  • Lee, Seung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.726-730
    • /
    • 2013
  • In order to develop a high voltage insulation material, spherical silicas with two average particle sizes of 5 ${\mu}m$ and 20 ${\mu}m$ were mixed in different mixing ratios (1:0, 0.7:0.3, 0.5:0.5, 0.3:0.7, 0:1) and their total filling content was fixed at 65 wt%. In order to observe the dispersion of the spherical silicas and the interfacial morphology between silica and epoxy matrix, field emission scanning electron microscope (FE-SEM) was used. The electrical insulation breakdown strength was estimated in sphere-plate electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of 5/20 ${\mu}m$ and the thickness dependence of the breakdown strength was also observed. The tensile strength of the neat epoxy was 82.8 MPa as average value and its increased with decreasing particles size and that of epoxy/silica (2 ${\mu}m$) was 107 MPa, which was 130.8% higher value.

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

An Investigation of TEM Specimen Preparation Methods from Powders Using a Centrifuge (원심분리기를 이용한 분말시료의 TEM용 시편 준비법 연구)

  • Jeung, Jong-Man;Lee, Young-Boo;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.67-73
    • /
    • 1999
  • It is practically hard to prepare good TEM specimens from powders which are embedded in epoxy materials for ion milling, because the milling rate difference between powders and epoxy is quite large. In order to overcome this problem, we tried to find methods to increase the density of powders in the embedding epoxy without loosing the adhesive strength between them. Powder density was considerably increased by employing a centrifuge for embedding, compared to the result by a conventional vacuum embedding. In addition, mixing powders of different sizes after sieving also enhanced the final density by allowing smaller particles filling in the gaps of larger particles. Ion milling of powders embedded by these methods resulted in thin specimens good enough for normal TEM works. TEM specimens from spherical, platy and fibrous powders of submicron size were successfully prepared by this centrifuging method.

  • PDF

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

Analysis of electrical resistivity characteristics according to the mixing ratio of coarse fillings in artificial rock joint (인공 암반절리의 조립토 충진물 혼합비에 따른 전기비저항 특성 분석)

  • Haeju Do;Tae-Min Oh;Hangbok Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2023
  • Monitoring technology based on electrical resistivity is widely used for non-destructive data collection and health analysis of underground structures and tunnels. Vulnerable sections such as fault zone generates many problems during construction of the tunnel. These problems cause displacement and stress changes of the ground. Therefore, it is necessary to predict the state of the fault zone section to ensure the mechanical stability of the underground structure. Monitoring the size of joints and the porosity of the fillings is essential for rocks. Previous studies have not considered the variety of fillings in rock joints. In this study, electrical resistivity tests were conducted according to the particle mixing state of the sandy fillings. When the size of fillings is decreased at the constant porosity, the electrical resistivity tends to increase. The results of this study are expected to be useful as basic electrical resistivity data for predicting the ground conditions and evaluation of the ground behavior that is containing sandy fillings in the rock joint for tunnels.