DOI QR코드

DOI QR Code

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents

고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용

  • Han, Gwang Su (Environment Protection, Gyeongsang National University) ;
  • Kim, Dul-Sun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Lee, Dong-Keun (Department of Chemical Engineering, Gyeongsang National University)
  • 한광수 (경상대학교 환경보전학과) ;
  • 김둘선 (경상대학교 화학공학과) ;
  • 이동근 (경상대학교 화학공학과)
  • Received : 2020.11.18
  • Accepted : 2021.01.06
  • Published : 2021.03.31

Abstract

Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

미연 탄소(unburned carbon, UC)는 대두유를 포수제로 사용하여 부유선별공정을 통해 최대 85.8 wt%까지 비산재로부터 성공적으로 회수되었다. CM (ceramic microsphere)은 부유선별공정 다음 공정인 하이드로 사이클론 분리공정으로부터 18 wt%의 수율을 얻을 수 있었고 회수한 UC와 CM을 각각 고무증량재와 플라스틱(polypropylene) 충진재의 대체재로 사용하여 산업재로 활용 가능성을 조사하였다. 입자가 큰 UC는 볼밀을 사용하여 평균입경 10.2 ㎛로 작게 분쇄하였다. 분쇄된 UC를 점토 대신에 고무증량재로 사용하였을 때 인장강도와 신율이 다소 낮게 나와 고무제품의 표준조건을 만족시키지는 못하였다. 따라서 표준조건을 충족시키기 위해 UC는 고무와 보다 긴밀한 결합이 필요하였고, 이를 위한 표면 에너지를 향상시키는 추가적인 처리가 필요하였다. CM은 평균입경이 5 ㎛의 구형입자로 관찰되었으며, 입자의 표면을 페놀수지, 폴리올, 스테아린산, 올레인산으로 개질하였다. 표면 개질된 CM은 PP (polypropylene) 충진재로 사용되었다. 표면 개질된 CM을 사용한 제품은 흐름성은 양호하였으나 결합력 부족으로 충격강도 및 굴곡강도는 향상되지 못하였다. 그러나 표면 개질된 CM에 유기물과 무기물의 대표적 컬플링제인 실란 1 wt%을 추가적으로 혼합함으로써 충격강도 및 굴곡강도가 크게 향상되는 효과를 얻을 수 있었다.

Keywords

References

  1. Maeng, J. H., Kim, T. Y., and Suh, D. H., "Minimizing Environmental Impact in Accordance with the Thermal Power Plant Ash Management (I)," Ministry of Environment, Korea Environment Institute (2014).
  2. Kim, W.-Y., Ji, H.-B., Yang, T.-Y., Yoon, S.-Y., and Park, H.-C., "Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash," J. Korean Ceram. Soc., 47(2), 151-156 (2010). https://doi.org/10.4191/KCERS.2010.47.2.151
  3. Seho, S. L., Lee, Y.-S., An, E.-M., and Cho, S.-B., "Application of Unburned Carbon Produced from Seochun Power Plant," J. Korean Inst. Resour. Recycl., 23(1), 40-47 (2014). https://doi.org/10.7844/kirr.2014.23.1.40
  4. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., and Xi, Y. Q., "A Comprehensive Review on the Applications of Coal Fly Ash," Earth-Sci. Rev., 141, 105-121 (2015). https://doi.org/10.1016/j.earscirev.2014.11.016
  5. Suh, D.-H., and Maeng, J.-H., "A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds," J. Environ. Impact Assess., 24(5), 472-486 (2015). https://doi.org/10.14249/eia.2015.24.5.472
  6. Cho, H., Maeng, J.-H., and Kim, E.-Y., "Studies on Expanding Application for the Recycling of Coal Ash in Domestic," J. Environ. Impact Assess., 26(6), 563-573 (2017). https://doi.org/10.14249/EIA.2017.26.6.563
  7. Kim, D.-S., Han, G. S., and Lee, D.-K., "Recycling of Useful Materials from Fly Ash of Coal-fired Power Plant," Clean Technol., 25(3), 179-188 (2019). https://doi.org/10.7464/KSCT.2019.25.3.179
  8. Lee, E.-S., Back, S.-K., Cho, S.-J., Kim, K.-H., and Seo, Y.-C., "Estimation of Stability of Mercury Compounds in Fly Ash from Waste Incinerator by Deriving the Correlation between Mercury Content and Concentration in Leachate," J. Korea Soc. Waste Manag., 36(7) 624-631 (2019). https://doi.org/10.9786/kswm.2019.36.7.624
  9. Choi, J.-H., and Oh, S. C., "Removal of Chlorine from Municipal Solid Waste Fly Ash by using Acid and Alkaline Solution," J. Korea Soc. Waste Manag., 36(5) 471-479 (2019). https://doi.org/10.9786/kswm.2019.36.5.471
  10. Song, O.-Y., and Jung, J.-O., "Recovery of Carbonic Matter from Municipal Solid Waste Fly Ash using Oil Agglomeration," J. Korea Soc. Waste Manag., 36(2) 146-153 (2019). https://doi.org/10.9786/kswm.2019.36.2.146
  11. Demir, U., Yamik, A., Kelebek, S., Oteyaka, B., Ucar, A., and Sahbaz, O., "Characterization and Column Flotation of Bottom Ashes from Tuncbilek Power Plant," Fuel, 87(6), 666-672 (2008). https://doi.org/10.1016/j.fuel.2007.05.040
  12. Emre Altun, N., Xiao, C., and Hwang, J.-Y., "Separation of Unburned Carbon from Fly Ash using a Concurrent Flotation Column," Fuel Process. Technol., 90, 1464-1470 (2009). https://doi.org/10.1016/j.fuproc.2009.06.029
  13. Han, G., Yang, S., Peng, W., Huang, Y., Wu, H., Chai, W., and Liu, J., "Enhanced Recycling and Utilization of Mullite from Coal Fly Ash with a Flotation and Metallurgy Process," J. Cleaner Prod., 178, 804-813 (2018). https://doi.org/10.1016/j.jclepro.2018.01.073
  14. Zhou, F., Yan, C., Wang, H., Zhou, S., and Liang, H., "The Result of Surfactants on Froth Flotation of Unburned Carbon from Coal Fly Ash," Fuel, 190, 182-188 (2017). https://doi.org/10.1016/j.fuel.2016.11.032
  15. Han, G. S., Kim, D.-S., and Lee, D.-K., "Clean Flotation Process to Recycle useful Materials from Fly Ash," Clean Technol., 26(3), 177-185 (2020). https://doi.org/10.7464/KSCT.2020.26.3.177
  16. Donnet, J.-B., Bansal, R. C., and Wang, M.-J., Carbon Black, 2nd ed., Science and Technology, New York (1993).
  17. Jena, M. S., Biswal, S. K., and Rudramuniyappa, M. V., "Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal," Int. J. Miner. Process, 87(1-2), 42-50 (2008). https://doi.org/10.1016/j.minpro.2008.01.004
  18. Park, S.-J., "Filler-elastic Composite Material," Elastomers Compos, 38(1), 3-18 (2003).
  19. Dai, J. C., and Huang, J. T., "Surface modification of clays and clay-rubber composite," Appl. Clay Sci., 15(1-2), 51-65 (1999). https://doi.org/10.1016/S0169-1317(99)00020-4