• Title/Summary/Keyword: Mixing fuel

Search Result 783, Processing Time 0.022 seconds

Effects of Aspect Ratio of a Fuel Injection Nozzle into a Supersonic Air Stream on Combustion Characteristics (초음속 공기유동으로의 연료 분사노즐 종횡비 변화에 대한 연소특성 연구)

  • 김경무;백승욱;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2004
  • This paper is to investigate the combustion characteristics with a three dimensional chemical reacting flow on the aspect ratio of an exit configuration of the slit type nozzle for the fuel injection and to device the methods of combustion/mixing enhancement. The results show that both inside inflow and slit side vertices should be considered from a viewpoint of the mixing. The combustion efficiency becomes the smallest at aspect ratio, where the aspect ratio is less and more than unity, respectively. The total pressure loss becomes the largest at aspect ratio of unity due to the high penetration. All results imply that a streamwise very long slit is desirable with respect to the combustion and the pressure loss.

A Study on the Thermal and Chemical Characteristics of Wasted Coal for the Development of Low Cost Fuel

  • Lee, G.H.;Shim, J.D.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • The seawater involving diverse chemical elements was mixed with wasted coals to improve the quality. The thermal and chemical characteristics of these seawater-mixed coals were investigated and compared with those of original coals. The contents of MgO, $Na_2O$, and $K_2O$ were increased by mixing seawater in wasted coals. The content of $Na_2O$ in these coal samples was greatly increased due to the sodium, which was the main component of seawater. Thus, it was expected that fusion temperatures of these coal samples were decreased. Coal samples mixed with seawater showed that the rapid weight loss was started at the lower temperature than those of original coal samples. In these coal samples, the temperatures of maximum heat emission were lowered by average $61^{\circ}C.$. Thus, it is suggested that some chemical constituents of the seawater act an important role on lowering the ignition temperature of wasted coal. By mixing seawater into wasted coals, the calorific values were increased. Especially, calorific values were greatly increased in the coal samples of lower quality as Baksan A and B with the improvement of 15~20%.

  • PDF

Performance of SOFC According to Thickness of Shell with Ni-YSZ Core-shell (Ni-YSZ Core-shell에서 Shell의 두께에 따른 SOFC의 출력특성)

  • CHOI, BYUNG-HYUN;HONG, SUN-KI;JI, MI-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.663-668
    • /
    • 2017
  • SOFC anode fabricated core-shell using machano-fusion method using core with submicron size Ni, nano size YSZ for shell. Using prepared core-shell, depending on the thickness of the shell, we studied how the characteristics of sintering and SOFC cell change by sintering the anode. The Ni-YSZ core-shell has a Ni core of 0.5 to $1.2{\mu}m$ over 2 to 7 YSZ of 15 to 20 nm is, and as the high speed mixing time increases, the YSZ number increases and the shell thickness becomes uniform increased. When the fuel electrode is manufactured with core-shell, it has superior sintering property, has grain of uniform size compared with the one synthesized by general mixing, the falling path is short, the conductors (electrons and ions) connection is excellent, the electrical conductivity has become excellent. The thicker the shell, the lower the electrical conductivity. When the thickness of shell ranged from 46 to 139 nm and 61 to 81 nm, the performance was the highest and the ASR was the smallest.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Hae-Joo;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

A Study on Combustion Characteristics and Flow Analysis of a Lean Premixed Flame in Lab-Scale Gas Turbine Combustor (모형 가스터빈 연소기에서 희박 예혼합 화염의 연소 특성 및 유동 해석에 관한 연구)

  • Ryu, Hye-Yeon;Kim, Gyu-Bo;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.574-581
    • /
    • 2008
  • The characteristics of combustion and flow for a lean premixed flame in lab-scale gas turbine combustor was studied through experiment and numerical analysis. From the experiment, flame structure and heat release rate were obtained from OH emission spectroscopy. Qualitative comparisons were made line-integrated OH chemiluminescence image and abel-transformed one. NOx analyzer was implemented to get the characteristic of NOx exhaust from the combustor. From the numerical analysis, the thermal distribution and characteristic of recirculation zone with the change of fuel-air mixing degree, the characteristic of methane distribution with equivalence ratio in the combustor respectively. Total heat release rate is increased with increasing equivalence ratio. Thermal Nox is reduced with increasing fuel-air mixing degree. Increasing equivalence ratio results in the decrease of the size of reaction zone and alteration of the position of the reaction zone into the entrance of the combustor.

Study on the Combustion Characteristics of a Lean-Premixed Combustor (예혼합 희박 연소기의 연소특성에 관한 연구)

  • Kim, Han-Seok;Lim, Am-Ho;Ann, Kuk-Young;Lee, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Various types of the air/fuel pre-mixer have been designed and tested to investigate the combustion characteristics of the lean-premixed gas turbine combustor, such as NO emission and flame stability. One type of the pre-mixers has been selected and installed to a 70 kW lean-premixed gas turbine combustor. The concentrations of CO and NO were measured with varying equivalence ratios in the combustion chamber at ambient pressure. The result shows that the emissions of CO and NO are heavily affected by the shape of the pre-mixer. The NO and CO emissions decreased, as the mixing ratio of air and fuel increased. In addition, the NO emission of the lean-premixed low NOx combustor is more dependent on the equivalence ratio than that of the conventional combustor.

  • PDF

CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR

  • Wang, Yingjie;Wang, Mingjun;Ju, Haoran;Zhao, Minfu;Zhang, Dalin;Tian, Wenxi;Liu, Tiancai;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1386-1395
    • /
    • 2020
  • High fidelity nuclear reactor fuel assembly simulation using CFD method is an effective way for the structure design and optimization. The validated models and user practice guidelines play critical roles in achieving reliable results in CFD simulations. In this paper, the international benchmark MATiS-H is studied carefully and the best user practice guideline is achieved for the rod bundles simulation. Then a 5 × 5 rod bundles model in the advanced pressurized water reactor (PWR) is established and the detailed three-dimensional thermal-hydraulic characteristics are investigated. The influence of spacer grids and mixing vanes on the flow and hear transfer in rod bundles is revealed. As the coolant flows through the spacer grids and mixing vanes in the rod bundles, the drastic lateral flow would be induced and the pressure drop increases significantly. In addition, the heat transfer is enhanced remarkably due to the strong mixing effects. The calculation results could provide meaningful guidelines for the design of advanced PWR fuel assembly.

Characteristics of Matrix Retaining Electrolyte in a Phosphoric Acid Fuel Cell Analyzed by A.C. Impedance Spectroscopy (복소임피던스법에 의한 인산형 연료전지용 전해질 매트릭스 특성)

  • 윤기현;장재혁;허재호;김창수;김태희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.189-196
    • /
    • 1995
  • Materials retaining electrolyte of a phosphoric acid fuel cell (PAFC) have been prepared with SiC powder to SiC whisker mixing ratios of 1:1, 1:2, 1:3, 1:4, 0:1 by a tape casting method. When 3wt% dispersant (sorbitan monooleate) is added to a matrix, the porosity of the matrix decreases a little while the bubble pressure and area of the matrix increase remarkably in comparison with no dispersant content. Effect of the electrolyte resistance and the polarization resistance on perfomance of a PAFC has been investigated using A.C. impedance spectroscopy. With the increase of whisker content, the electrolyte resistance decreases due to the increase of porosity and acid absorbancy, and the polarization resistance increases due to the increase of surface roughness. The polarization resistance affects current density predominantly at the higher potential than 0.7V becuase the polarization resistance is considrably larger than the electrolyte resistance. Both the electrolyte resistance and the polarization resistance affect current density near 0.7V of the fuel cell operating potential because they have similar values. The electrolyte resistance affects current density predominantly at the lower potential than the fuel cell operating potential because the electrolyte resistance is larger than the polarization resistance.

  • PDF

A Study on Diesel Engine NOx and Soot Emission Characteristics using Different Fuel Oils

  • Nam, Jeong-Gil;Kang, Dae-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1080-1088
    • /
    • 2008
  • This paper addresses some concerns faced by the shipping industry nowadays. Initially, the environmental issues were resolved and stricter regulations are now being implemented with regards to the exhaust gas, specifically nitrogen oxides (NOx) and sulfur oxides (SOx), emitted from ships. Secondly, with the increasing and unstable cost of fuel oils in the world market, it has become almost a necessity to explore on a new alternative fuel. Hence, this study was conducted. An experiment was carried-out on a fishing survey vessel with the main engine (M/E) and generator engine (G/E) operated on expensive marine gas oil (MGO). During the experiment, two pre-refinery systems were installed and different fuel oil samples were employed for the M/E and the G/E. Furthermore, the NOx emission and soot concentration were monitored and verified. The results confirmed the compatibility of some fuel oil types to the engines and meeting the emission standards. MDO, MF15 and Bunker A can be used in place of MGO for the engines(M/E, G/E).

A Study on the Application Characteristics of Biodiesel Fuel in a CRDI Diesel Engine on the Swirler in Intake Manifold (바이오디젤유를 이용한 CRDI방식 디젤기관의 흡기포트내 선회기 적용 특성에 관한 연구)

  • Im, Seok-Yeon;Jung, Young-Chul;Oh, Dong-Jin;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.17-23
    • /
    • 2007
  • This study aims to investigate the property of engine performance and the material property of exhaust gas by application of the intake swirler The fuel of BDF 20 was made by mixing 80% of diesel fuel and 20% of biodiesel fuel. These fuels were used and tested in the diesel engine of CRDI type used currently. The swirler was made by streamlined shape to lessen the intake resistance, The three types of its wing angle are $20^{\circ}$, $40^{\circ}$ and $60^{\circ}$. From experimental results, we found that the characteristics of engine performance, soot was effective in wing angle of $20^{\circ}$ and NOx was effective in $60^{\circ}$.